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The Approximate Capacity of the
MIMO Relay Channel

Xianglan Jin, Member, IEEE, and Young-Han Kim, Fellow, IEEE

Abstract— Capacity bounds are studied for the multiple-
antenna complex Gaussian relay channel with t1 transmitting
antennas at the sender, r2 receiving and t2 transmitting antennas
at the relay, and r3 receiving antennas at the receiver. It is shown
that the partial decode–forward coding scheme achieves within
min(t1, r2) bits from the cutset bound and at least one half of the
cutset bound, establishing a good approximate characterization
of the capacity. A similar additive gap of min(t1 + t2, r3) + r2
bits is shown to be achieved by the compress–forward coding
scheme. The corresponding results for time-division half-duplex
relay channels are also established.

Index Terms— Additive gap, channel capacity, compress–
forward, cutset bound, multiplicative gap, partial decode–
forward.

I. INTRODUCTION

THE relay channel, whereby point-to-point communication
between a sender and a receiver is aided by a relay, is

a canonical building block for cooperative wireless communi-
cation. Introduced by van der Meulen [1], this channel model
has been studied extensively in the literature, including the
now classical paper by Cover and El Gamal [2]. The problem
of characterizing the capacity in a computable expression,
however, remains open even for simple channel models, and
consequently a large body of the literature has been devoted
to the study of upper and lower bounds on the capacity.
Reminiscent of the max-flow min-cut theorem [3], the cutset
bound was established by Cover and El Gamal [2], which
sets an intuitive upper limit on the capacity. On the other
direction, there are a myriad of coding schemes, typically
referred to as “*–forward” [4], each establishing a lower
bound on the capacity. Among these, the two most versatile
coding schemes are partial decode–forward [2, Th. 7] and
compress–forward [2, Th. 6], which are complementary to
each other (providing digital-to-digital and analog-to-digital
relays, respectively) and have been successfully extended to
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general relay networks for unicast, multicast, broadcast, and
multiple access [5]–[9].

The Gaussian relay channel, whereby the signals from
the sender and the relay are corrupted by additive white
Gaussian noise, is one of the most basic channel models
studied in the literature. The capacity of the Gaussian relay
channel, however, is again unknown for any nondegenerate
channel parameters. Instead, the following results have been
established for single-antenna Gaussian relay channels.

• Partial decode–forward, which is a superposition of
decode–forward and direct transmission, reduces to the
better of the two [10].

• Partial decode–forward achieves within one bit from the
cutset bound [6], [11] (a similar 1-bit gap result can be
also obtained using compress–forward [12]).

These results establish simple approximate expressions of the
capacity, which are particularly useful at high signal-to-noise
ratio (SNR). A natural question arises on how these results can
be extended to multiple-antenna (also known as multiple-input
multiple-output or MIMO) Gaussian relay channels.

Capacity bounds for MIMO relay channels have been
studied in several papers. By convex optimization tech-
niques [13], Wang et al. [14] derived upper and lower
bounds based on looser versions of the cutset bound and
the decode–forward bound. These results have been improved
by more advanced coding schemes (partial decode–forward
and compress–forward) with suboptimal decoding rules by
Simoens et al. [15] and Ng and Foschini [16]. The usual focus
of this line of work, however, has been on the optimization
of resources (power and bandwidth) for practical implemen-
tations and on numerical computation of resulting capacity
bounds. In the same vein, a recent study by Gerdes et al. [17]
established the optimal input distribution of the partial decode–
forward lower bound for the Gaussian MIMO relay channel.

The most relevant results to our main question are estab-
lished in [6], [9], and [18]. In the award-winning paper,
Avestimehr et al. [6] proposed a powerful approach to studying
wireless networks, which, inter alia, establishes an approxi-
mate capacity of the Gaussian MIMO relay network using the
quantize–map–forward scheme. Among several extensions of
this seminal work, one of the tightest results to date for MIMO
relay networks has been established by Kolte et al. [18], who
carefully compared the noisy network coding lower bound for
the general relay network [8] with the cutset bound. In an alter-
native direction, the distributed decode–forward scheme [9],
which generalizes partial decode–forward to general relay
networks, can be used to approximate the capacity of the
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Gaussian MIMO relay network. These results [6], [9], [18]
can be readily specialized to the 3-node relay channel and
yield constant gap results in terms of the number of antennas.

This paper provides more direct and tighter answers to
our main question through an elementary yet careful analysis
of the partial decode–forward and compress–forward lower
bounds for the MIMO relay channel. The main contributions
are summarized as follows.

• For the complex Gaussian relay channel with t1
transmitting antennas at the sender, r2 receiving and
t2 transmitting antennas at the relay, and r3 receiving
antennas at the receiver, we show that the partial decode–
forward achieves within min(t1, r2) bits of the cutset
bound (Theorem 1).

• This gap is somewhat relaxed when noncoherent
transmission is employed (Proposition 4).

• Unlike the single-antenna counterpart, partial decode–
forward can achieve rates arbitrarily higher than the better
of decode–forward and direct transmission in MIMO
relay channels (Proposition 5).

• To complement the additive gap result, we show that
both coherent and noncoherent partial decode–forward
coding schemes achieve at least half the cutset bound
(Theorem 2).

• We show that compress–forward achieves min(t1 +
t2, r3) + r2 bits within the cutset bound (Theorem 3).

In conclusion, the paper establishes simple approximate
expressions of the capacity, which are particularly useful at
high and low SNR. Beyond these analytical results, we also
discuss how these expressions can be computed efficiently.

Several models for half-duplex relay channels have been
studied in the literature, in which the relay or relay
antenna cannot transmit and receive simultaneously; see, for
example, [6], [10], [16], [19]–[23]. Among these, arguably
the most interesting model was proposed by Kramer [21],
whereby the relay state is switched between the transmitting
and receiving modes based on the channel output at the relay.
As an extension, Cardone et al. [23] introduced an individual
antenna switching strategy at the relay for MIMO relay
networks and established the constant gap result of 1.96 bits
per antenna using the noisy network coding scheme. This
result extends their earlier work on the single-antenna relay
channel case [22] that shows partial decode–forward achieves
the capacity within 1 bit and compress–forward achieves the
capacity within 1.61 bits. Our main results for the full-duplex
case can be easily adapted to the half-duplex MIMO relay
channel with t1 transmitting antennas at the sender, a2 half-
duplex antennas at the relay, and r3 receiving antennas at the
receiver as follows.

• Partial decode–forward achieves within min(t1, a2) bits of
the cutset bound as well as at least half the cutset bound
(Proposition 13).

• Compress–forward achieves within min(t1 + 2a2, r3 +
1.58a2) bits of the cutset bound (Proposition 14).

The rest of the paper is organized as follows. In the next
section, we formally define the channel model and review
the cutset upper bound, the partial decode–forward lower

Fig. 1. The MIMO relay channel.

bound, and the compress–forward lower bound on the capacity.
The main results on additive and multiplicative gaps for partial
decode–forward and compress–forward are also stated therein.
The proofs of these results are given in Sections III and IV.
Section V is devoted to the computational aspects of our
results, namely, how the capacity bounds can be computed
efficiently via appropriate convex optimization formulations.
Using these computational tools, the main results are verified
by numerical simulations. In Section VI, half-duplex MIMO
relay channels are discussed.

Throughout the paper, we use the following notation. The
superscript (·)H denotes the complex conjugate transpose of
a (complex) matrix; tr(·) denotes the trace of a matrix;
In denotes the n × n identity matrix (where the subscript n
is omitted when it is irrelevant or clear from the context);
Cn×m denotes a set of n × m complex matrices; A � B
denotes that A − B is hermitian and positive semidefinite for
hermitian matrices A and B , and E(·) denotes the expectation
with respect to the random variables in the argument.

II. PROBLEM SETUP AND MAIN RESULTS

We model the point-to-point communication system with a
relay as a MIMO relay channel with sender node 1, relay
node 2, and receiver node 3; see Fig. 1. Throughout the
paper, we assume the complex signal model, but corresponding
results for the real case can be easily obtained; see the
conference version [24] of the current paper for some results
on the real model. The relay and the receiver have r2 and r3
receiving antennas with respective channel outputs

Y2 = G21X1 + Z2,

Y3 = G31X1 + G32X2 + Z3, (1)

where G21 ∈ Cr2×t1 , G31 ∈ Cr3×t1 , and G32 ∈ Cr3×t2 are
complex channel gain matrices, X1 ∈ Ct1 and X2 ∈ Ct2 are
the respective inputs at the sender and the relay, and Z2 ∼
CN(0, Ir2 ) and Z3 ∼ CN(0, Ir3 ) are independent complex
Gaussian noise components. For simplicity, we will often use
the shorthand notation

G3∗ = [
G31 G32

]
and G∗1 =

[
G21
G31

]
.

We assume average power constraints P across the t1 and t2
transmitting antennas at the sender and the relay, respectively.
As in the standard relay channel model [2], the encoder is
defined by xn

1(m), the relay encoder is defined by x2i (y
i−1
2 ),

i = 1, . . . , n, and the decoder is defined by m̂(yn
3). We assume

that the message M is uniformly distributed over the message
set. The average probability of error is defined as P(n)

e =
P{M̂ �= M}. A rate R is said to be achievable for the relay
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channel if there exists a sequence of (2nR , n) codes such that
limn→∞ P(n)

e = 0. The capacity C of the relay channel is the
supremum of all achievable rates.

The following upper bound on the capacity is well known.
Proposition 1 (Cutset Bound [2, Th. 4]): The capacity C

of the MIMO relay channel is upper bounded by

RCS = sup
F(x1,x2)

min
{

I (X1, X2; Y3), I (X1; Y2, Y3|X2)
}

(2)

= max
K

min
{

log |Ir3 + G3∗K GH
3∗|,

log |Ir2+r3 + G∗1K1|2GH∗1|
}

(3)

= max
K

min
{

log |Ir3 + [G31 G32]K [G31 G32]H|,
log |It1 + (GH

21G21 + GH
31G31)K1|2|

}

(4)

where the supremum in (2) is over all joint distributions
F(x1, x2) such that E(XH

j X j ) ≤ P, j = 1, 2, the maxima
in (3) and (4) are over all (t1 + t2) × (t1 + t2) matrices

K =
[

K1 K12
K H

12 K2

]
� 0 (5)

such that tr(K j ) ≤ P, j = 1, 2, and

K1|2 = K1 − K12 K −1
2 K H

12.
The equality in (4) is justified by the following simple fact

that will be used repeatedly throughout the paper.
Lemma 1: For γ ∈ [0, 1], a r × t matrix G, and a t × t

matrix K � 0,

|Ir + γ GK GH| = |It + γ GHGK |
≥ γ min(t,r)|Ir + GK GH|. (6)

We compare the cutset bound with two lower bounds on the
capacity. The first lower bound is based on the partial decode–
forward coding scheme, in which the relay recovers part of the
message and forwards it.

Proposition 2 (Partial Decode–Forward Bound [2, Th. 7]):
The capacity C of the MIMO relay channel is lower bounded
by

RPDF = sup min
{

I (X1, X2; Y3),

I (U; Y2|X2) + I (X1; Y3|X2, U)
}

(7)

= sup min
{

I (X1, X2; Y3),

I (X1; U, Y3|X2) − I (X1; U|X2, Y2)
}

(8)

where the suprema are over all joint distributions F(u, x1, x2)
such that E(XH

j X j ) ≤ P, j = 1, 2.
Remark 1: The equivalence between (7) and (8) is due to

the fact that U → X1 → Y2 form a Markov chain. It can be
readily checked that the partial decode–forward lower bound
does not increase by (coded) time sharing.

The partial decode–forward lower bound can be relaxed in
several directions. First, by limiting the input distribution to a
more practical product form, we obtain the noncoherent partial

decode–forward lower bound:

RNPDF = sup min
{

I (X1, X2; Y3),

I (U; Y2|X2) + I (X1; Y3|X2, U)
}

(9)

= sup min
{

I (X1, X2; Y3),

I (X1; U, Y3|X2) − I (X1; U|X2, Y2)
}

(10)

where the suprema are over all product distributions
F(u, x1)F(x2) such that E(XH

j X j ) ≤ P , j = 1, 2. Second,
by setting U = X1, which is equivalent to having the relay
recover the entire message, we obtain the decode–forward
lower bound:

RDF = sup min
{

I (X1, X2; Y3), I (X1; Y2|X2)
}

(11)

= max
K

min
{

log |Ir3 + G3∗K GH
3∗|,

log |Ir2 + G21K1|2GH
21|

}
(12)

where the supremum in (11) is over all distributions F(x1, x2)
such that E(XH

j X j ) ≤ P , j = 1, 2, and the maximum in (12)
is over all (t1 + t2) × (t1 + t2) matrices K � 0 of the form (5)
such that tr(K j ) ≤ P , j = 1, 2. Third, by setting U = ∅ and
X2 = 0, we obtain the direct-transmission lower bound:

RDT = sup I (X1; Y3)

= max
K1

log |Ir3 + G31K1GH
31| (13)

where the supremum is over all distributions F(x1) such that
E(XH

1 X1) ≤ P and the maximum is over all t1 × t1 matrices
K1 � 0 such that tr(K1) ≤ P .

Remark 2: Since decode–forward and direct transmission
schemes are two special cases of partial decode–forward, we
have in general

RPDF ≥ max(RDF, RDT). (14)
Next, we present another important lower bound, in which

the relay compresses its noisy observation instead of recover-
ing the message.

Proposition 3 (Compress–Forward Bound [2, Th. 6], [10]):
The capacity C of the MIMO relay channel is lower
bounded by

RCF = sup I (X1; Ŷ2, Y3|X2) (15)

where the supremum is over all conditional distributions
F(x1)F(x2)F(ŷ2|y2, x2) such that E(XH

j X j ) ≤ P, j = 1, 2
and

I (X2; Y3) ≥ I (Y2; Ŷ2|X2, Y3).

This lower bound can be expressed equivalently as

RCF = sup min
{

I (X1, X2; Y3) − I (Y2; Ŷ2|X1, X2, Y3),

I (X1; Ŷ2, Y3|X2)
}

(16)

where the supremum is over all conditional distributions
F(x1)F(x2)F(ŷ2|y2, x2) such that E(XH

j X j ) ≤ P, j = 1, 2.
Remark 3: The compress–forward lower bound before tak-

ing the supremum in (15) or (16) is not a convex function of
the conditional distribution F(x1)F(x2)F(ŷ2|y2, x2) in general
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and can be potentially improved by (coded) time sharing
[25, Remark 16.4].

Remark 4: By setting Ŷ2 = ∅, compress–forward reduces
to direct transmission and thus RCF ≥ RDT.

Remark 5: It is worthwhile to compare the cutset bound
in (2), the partial decode–forward lower bound in (8), and the
compress–forward lower bound in (16). The first term in the
partial decode–forward lower bound is identical to the coop-
erative multiple access channel (MAC) bound I (X1, X2; Y3),
but the second term differs from the cooperative broadcast
channel (BC) bound I (X1; Y2, Y3|X2) in that U replaces Y2
and there is a rate loss of I (X1; U|X2, Y2). In comparison,
the second term of the compress–forward lower bound is of
the same form to the cooperative BC bound (except for Ŷ2
in place of Y2), but the first term differs from the cooperative
MAC bound in that there is a rate loss of I (Y2; Ŷ2|X1, X2, Y3)
in addition to the loss from using the noncoherent input
distribution.

We are now ready to state the main results of the paper.

Theorem 1: For every G21, G31, G32, and P ,

�PDF := RCS − RPDF ≤ min(t1, r2). (17)

This result improves upon the constant gap of t1 + t2 +
r2 + r3, which is achieved by distributed decode–forward
[9, Remark 5] when specialized to the 3-node relay channel.
Theorem 1 will be proved in Subsection III-A.

As a supplement to the additive gap result in Theorem 1,
which is useful in approximating the capacity at high SNR,
we establish the following multiplicative gap to provide a
tighter approximation in low SNR, which will be proved in
Subsection III-C.

Theorem 2: For every G21, G31, G32, and P,

RCS

RPDF
≤ 2. (18)

In other words, partial decode–forward always achieves at
least half the capacity.

The above results can be relaxed by using the noncoherent
partial decode–forward.

Proposition 4: For every G21, G31, G32, and P,

�NPDF := RCS − RNPDF
≤ max

[
min(t1, r2), min(t1 + t2, r3)

]
(19)

and

RCS

RNPDF
≤ 2. (20)

Proposition 4 will be proved in Subsections III-B and III-C.
For the single-antenna case, the partial decode–forward

lower bound can be shown [10, Sec. II] to be equal to
the maximum of the decode–forward and direct–transmission
lower bounds; cf. (14). With multiple antennas, however,
partial decode–forward is in general much richer than decode–
forward and direct transmission.

Proposition 5: If t1, t2, r2, r3 ≥ 2,

sup
G21,G31,G32,P

[
RPDF − max(RDF, RDT)

] = ∞.

Proposition 5 will be proved in Subsection III-D.

As mentioned earlier, several generalizations of the
compress–forward coding scheme have been shown to achieve
the capacity of general MIMO relay networks within a finite
number of bits, which can be then specialized back to the
3-node relay channel. In particular, the quantize–map–forward
scheme by Avestimehr et al. [6] achieves within 12(r2 +r3)+
3(t1 + t2) bits from the cutset bound. This bound can be
improved by specializing a recent result [18, Th. 1] for general
MIMO relay networks and making it channel-independent.

Proposition 6 (Kolte et al. [18]): For every G21, G31, G32,
and P,

�CF := RCS − RCF

≤ DOF · log

(
1 + t1 + t2

DOF

)

+ min
σ 2

[
r2 + r3

σ 2 log e + DOF · log(1 + σ 2)

]

(21)

where DOF = max[min(t1 + t2, r3), min(t1, r2 + r3)].
In this paper, we tighten this result further as follows.
Theorem 3: For every G21, G31, G32, and P,

�CF ≤ min
σ 2

max
[
min(t1 + t2, r3) + r2 log(1 + 1/σ 2),

min(t1, r2) log(1 + σ 2)
]

(22)

≤ min(t1 + t2, r3) + r2. (23)

This theorem will be proved in Section IV.
No multiplicative gap is known between the compress–

forward lower bound and the cutset bound. This follows partly
from the fact that the optimal distribution for (15) or (16)
is rather difficult to characterize. It can be shown, however,
that when restricted to Gaussian distributions, the compress–
forward lower bound (even with time sharing) may have an
unbounded multiplicative gap from the cutset bound. As a
compromise, we state the following simple consequence of
Remark 4 and the proof of Theorem 2.

Proposition 7: For every G21, G31, G32, and P,

RCS

max(RDF, RCF)
≤ 2. (24)

III. PARTIAL DECODE–FORWARD

In this section, we establish the results on partial decode–
forward stated in the previous section (Theorem 1, Theorem 2,
Proposition 4, and Proposition 5).

A. Partial Decode–Forward (Proof of Theorem 1)

We evaluate the partial decode–forward lower bound in (7)
with (X1, X2) ∼ CN(0, K ), where K � 0 is of the form in (5),
and

U = G21X1 + Z′
2, (25)

where Z′
2 ∼ CN(0, Ir2 ) is independent of (X1, X2, Z2, Z3).

Note that (X1, X2, U, Y3) has the same distribution as
(X1, X2, Y2, Y3). The first term of the minimum in (7) is

I (X1, X2; Y3) = log
∣
∣Ir3 + G3∗K GH

3∗
∣
∣. (26)
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For the second term, since

Cov(X1|U, X2)

= Cov(X1|Y2, X2)

= K1|2 − K1|2GH
21(Ir2 + G21K1|2GH

21)
−1G21K1|2

= K1|2
(

It1 + GH
21G21K1|2

)−1
,

we have

I (U; Y2|X2) + I (X1; Y3|X2, U)

= log
|Ir3 + G31 Cov(X1|U, X2)GH

31|
|Ir2 + G21 Cov(X1|U, X2)GH

21|
+ log |Ir2 + G21K1|2GH

21|
= log |It1 + (GH

21G21 + GH
31G31)K1|2|

+ log
|It1 + GH

21G21K1|2|
|It1 + 2GH

21G21K1|2| (27)

≥ log |It1 + (GH
21G21 + GH

31G31)K1|2| − min(t1, r2) (28)

where the last inequality follows by Lemma 1. Since
min(a, b) − min(c, d) ≤ max(a − c, b − d), comparing (26)
and (28) with the cutset bound in (4) completes the proof of
Theorem 1.

We can prove Theorem 1 alternatively using the following
result that is applicable to a more general class of relay chan-
nels and follows by setting p(u|x1, x2) = pY2|X1,X2(u|x1, x2)
in the second form of the partial decode–forward lower bound
in (8).

Proposition 8: For a discrete memoryless relay channel
p(y2, y3|x1, x2) = p(y2|x1, x2)p(y3|x1, x2),

�PDF := RCS − RPDF

≤ max
p(x1,x2)

I (X1; U |X2, Y2)

where p(u|x1, x2) = pY2|X1,X2(u|x1, x2).
Now, we apply Proposition 8 to the MIMO relay channel

by setting U as the form in (25). Then,

�PDF ≤ sup
F(x1,x2)

I (X1; U|X2, Y2)

= sup
F(x1,x2)

h(U|X2, Y2) − h(Z′
2)

= max
K

log |Ir2 + G21 Cov(X1|Y2, X2)GH
21| (29)

= max
K

log |It1 + GH
21G21K1|2(It1 + GH

21G21K1|2)−1|

= max
K

log
|It1 + 2GH

21G21K1|2|
|It1 + GH

21G21K1|2|
≤ min(t1, r2),

where the suprema are over all joint cdfs F(x1, x2) such that
E(XH

j X j ) ≤ P , j = 1, 2, and the maxima are over all jointly
Gaussian pairs (X1, X2) and their covariance matrices K of
the form (5). Here the equality in (29) is due to the maximum
differential entropy lemma (see, for example, [25, Sec. 2.2]).

B. Noncoherent Partial Decode–Forward (Proof of the
First Statement of Proposition 4)

We use the following fact.

Lemma 2: Let K � 0 be of the form in (5). Then, for every
G31 and G32, we have

G31K1GH
31 + G32K2GH

32 � G32K H
12GH

31 + G31K12GH
32.

(30)Proof: Consider

[
G31 G32

]
[

K1 −K12
−K H

12 K2

]
[
G31 G32

]H � 0.

To prove Proposition 4, let K � 0 be of the form in (5).
Let X1 ∼ CN(0, K1) and X2 ∼ CN(0, K2) be independent
of each other, and define U as in (25). Then, by Lemmas 1
and 2, the first term of the minimum in the noncoherent partial
decode–forward lower bound in (9) is

I (X1, X2; Y3)

= log |Ir3 + G31 K1GH
31 + G32 K2GH

32| (31)

≥ log
∣∣
∣Ir3 + 1

2
(G31 K1GH

31 + G32 K2GH
32

+ G32K H
12GH

31 + G31K12GH
32)

∣∣
∣ (32)

≥ log |Ir3 + G3∗K GH
3∗| − min(t1 + t2, r3). (33)

Following steps similar to the coherent case in
Subsection III-A, we have

Cov(X1|U, X2) = Cov(X1|U) = K1(It1 + GH
21G21 K1)

−1

and

I (U; Y2|X2) + I (X1; Y3|X2, U)

= log
|Ir3 + G31 Cov(X1|U)GH

31|
|Ir2 + G21 Cov(X1|U)GH

21|
+ log |Ir2 + G21K1GH

21|
= log |It1 + (GH

21G21 + GH
31G31)K1|

+ log
|Ir2 + G21K1GH

21|
|It1 + 2GH

21G21K1|
≥ log |It1 + (GH

21G21 + GH
31G31)K1| − min(t1, r2). (34)

Recalling K1 � K1|2 and comparing (33) and (34) with the
cutset bound in (4) completes the proof.

C. Multiplicative Gap (Proofs of Theorem 2 and
the Second Statement of Proposition 4)

We establish the factor-of-two gap of noncoherent partial
decode–forward, which in turn implies the factor-of-two gap
of (coherent) partial decode–forward in Theorem 2. By setting
U = X1 or ∅ in (9) and specializing (12) to indepen-
dent (X1, X2), it can be readily checked that RNPDF and
max(RDF, RDT) are simultaneously lower bounded by

max
{

max
K1,K2

min
(
log |Ir3 + G31K1GH

31 + G32K2GH
32|,

log |Ir2 + G21K1GH
21|

)
,

max
K1

log |Ir3 + G31K1GH
31|

}

= max
K1,K2

min
{

log |Ir3 + G31K1GH
31 + G32 K2GH

32|,
max

(
log |Ir2 + G21K1GH

21|,
log |Ir3 + G31K1GH

31|
)}

. (35)
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We further bound each term in (35) from below. By (32) and
the fact that |I + A/2|2 = |I + A + A2/4| ≥ |I + A| for any
A � 0, we have

log |Ir3 + G31K1GH
31 + G32K2GH

32|
≥ log

∣
∣∣Ir3 + 1

2
(G31K1GH

31 + G32K2GH
32

+G32K H
12GH

31 + G31K12GH
32)

∣
∣∣

≥ 1

2
log |Ir3 + [G31 G32]K [G31 G32]H|. (36)

Similarly, since |I + A|·|I +B| ≥ |I + A+B| for any A, B � 0
(see [26]),

max
{

log |It1 + GH
21G21K1|, log |It1 +GH

31G31K1|
}

≥ 1

2

(
log |It1 +GH

21G21K1| + log |It1 +GH
31G31K1|

)

≥ 1

2
log

∣
∣It1 + (GH

21G21 + GH
31G31)K1

∣
∣. (37)

Comparing (36) and (37) with the cutset bound in (4)
establishes that

RPDF ≥ max(RNPDF, RDF, RDT)

≥ min{RNPDF, max(RDF, RDT)} ≥ 1

2
RCS. (38)

We can establish Theorem 2 directly based on the following
result that is applicable to a more general class of relay
channels.

Proposition 9: For a discrete memoryless relay channel
p(y2, y3|x1, x2) = p(y2|x1, x2)p(y3|x1, x2),

RCS

RPDF
≤ 2.

Proof: Consider

I (X1; Y2, Y3|X2) = I (X1; Y2|X2) + I (X1; Y3|X2, Y2)

≤ I (X1; Y2|X2) + I (X1; Y3|X2)

≤ 2 max
(
I (X1; Y2|X2), I (X1; Y3|X2)

)
,

(39)

where the first inequality follows since Y2 → (X1, X2) → Y3
form a Markov chain. By setting U = X1 and U = ∅ in (7),
and using the inequality in (39), we have

RPDF

≥ max
p(x1,x2)

max
{
min

(
I (X1, X2; Y3), I (X1; Y2|X2)

)
,

I (X1; Y3|X2)
}

= max
p(x1,x2)

min
{

I (X1, X2; Y3),

max
(
I (X1; Y2|X2), I (X1; Y3|X2)

)}

≥ 1

2
max

p(x1,x2)
min

{
I (X1, X2; Y3),

2 max
(
I (X1; Y2|X2), I (X1; Y3|X2)

)}

≥ 1

2
max

p(x1,x2)
min

(
I (X1, X2; Y3), I (X1; Y2, Y3|X2)

)

= 1

2
RCS.

D. Decode–Forward and Direct Transmission
(Proof of Proposition 5)

Consider the MIMO relay channel with G31 = diag(g, 1),
G21 = diag(1, g), G32 = diag(g, g), g > 1, which is
equivalent to a product of two mismatched single-antenna
relay channels, one with the direct channel stronger than the
sender-to-relay channel and the other in the opposite direction.
Setting K1|2 = K1 = K2 = (P/2)I2 in (26) and (28), we have

RPDF ≥ min

{
log

(
1 + g2 P

)(
1 + (1 + g2)

P

2

)
,

log
(

1 + (1 + g2)
P

2

)2 − 2

}

= log
(

1 + (1 + g2)
P

2

)2 − 2. (40)

In comparison,

RDF = RDT = max
P1+P2≤P

log(1 + P1)(1 + g2 P2)

≤ log(1 + P)(1 + g2 P). (41)

Therefore, we have

RPDF − max(RDF, RDT) ≥ log

(
1 + (1 + g2) P

2

)2

(1 + P)(1 + g2 P)
− 2

which tends to infinity as g → ∞. Intuitively, partial decode–
forward can choose different operations per antenna, the
flexibility of which is missing in decode–forward and direct
transmission. Based on this example, more examples of larger
dimensions can be constructed.

IV. COMPRESS–FORWARD

We prove Theorem 3. Let K � 0 be of the form in (5).
Let X1 ∼ CN(0, K1) and X2 ∼ CN(0, K2) be independent of
each other, and

Ŷ2 = Y2 + Ẑ2 (42)

where Ẑ2 ∼ CN(0, σ 2 Ir2) is independent of X1, X2, Z2,
and Z3. Then,

I (Y2; Ŷ2|X1, X2, Y3)

= h(Ŷ2|X1, X2, Y3) − h(Ŷ2|X1, X2, Y2, Y3)

= r2 log(1 + 1/σ 2) (43)

and

I (X1; Ŷ2, Y3|X2)

= log

∣
∣
∣
∣

[
(1 + σ 2)Ir2 0

0 Ir3

]
+ G∗1 K1GH∗1

∣
∣
∣
∣

∣
∣
∣
∣

[
(1 + σ 2)Ir2 0

0 Ir3

]∣
∣
∣
∣

= log

∣
∣
∣
∣Ir2+r3 +

[
1√

1+σ 2
G21

G31

]

K1

[
1√

1+σ 2
G21

G31

]H∣
∣
∣
∣

= log

∣
∣
∣∣Ir2+r3 +

[
1

1+σ 2 A 1√
1+σ 2

B
1√

1+σ 2 BH D

]∣
∣
∣∣

= log |Ir3 + D|
+ log

∣
∣
∣Ir2 + 1

1 + σ 2

(
A − B(Ir3 + D)−1 BH

)∣∣
∣ (44)
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≥ log |Ir3 + D| + log
∣∣Ir2 + A − B(Ir3 + D)−1 BH

∣∣

− log(1 + σ 2)min(t1,r2) (45)

= log

∣
∣
∣
∣Ir2+r3 +

[
A B

BH D

]∣
∣
∣
∣ − min(t1, r2) log(1 + σ 2)

(46)

= log |It1 + (GH
21G21 + GH

31G31)K1|
− min(t1, r2) log(1 + σ 2), (47)

where A = G21K1GH
21, B = G21K1GH

31, D = G31K1GH
31,

(44) and (46) are due to
∣
∣
∣
∣

[
Ã B̃
C̃ D̃

]∣
∣
∣
∣ = |D̃| · | Ã − B̃ D̃−1C̃|,

and (45) follows by Lemma 1. The first statement of
Theorem 3 is now established by substituting (33), (43),
and (47) in the compress–forward lower bound in (16) and
comparing it with the cutset bound in (4). Setting σ 2 = 1
in (22) yields the second statement in (23).

V. COMPUTATION OF THE CAPACITY BOUNDS

A. Formulations of Optimization Problems

1) Cutset Bound: Computing the cutset upper bound in (3)
can be formulated as the following convex optimization
problem [16]:

maximize RCS

over RCS ≥ 0, K � 0, K1|2 � 0

subject to RCS ≤ log
∣
∣Ir3 + G3∗K GH

3∗
∣
∣

RCS ≤ log
∣
∣Ir2+r3 + G∗1K1|2GH∗1

∣
∣

tr(AH
1 K A1) ≤ P, tr(AH

2 K A2) ≤ P

K − A1K1|2 AH
1 � 0 (48)

where

A1 =
[

It1
0t2×t1

]
and A2 =

[
0t1×t2

It2

]
.

The optimization problem in (48) can be solved by standard
convex optimization techniques or packages, e.g., [27].

2) Partial Decode–Forward Lower Bound: Since direct
computation of (7) or (8) is intractable, we instead consider
three lower bounds on RPDF, namely, RDF, RDT, and the
special case of RPDF evaluated by (25), and take the maximum
of the three. Note that all three lower bounds can be viewed
as the partial decode–forward lower bound evaluated by (25)
with a more general choice of Z′

2 ∼ CN(0, σ 2 Ir2), where
σ 2 = 0,∞, and 1, respectively. Considering more values of
σ 2 can further improve the bound at the cost of complexity.

As with the cutset bound, both RDF and RDT can be
computed efficiently as a convex optimization problem. The
third bound, characterized by (26) and (27), is nonconvex.
Thus, we evaluate the bound with the optimal solution to
the convex optimization problem defined by (26) and (28).
A similar approach can be taken for computation of RNPDF.

Fig. 2. The additive gaps between the cutset bound and the partial
decode–forward and compress–forward lower bounds for randomly generated
2 × 2 MIMO relay channels.

3) Compress–Forward Lower Bound: We consider two
convex lower bounds on RCF, namely, the special case of RCF
evaluated by (42) with σ 2 = 1, namely,

max
K1,K2

min
{

log |Ir3 + G31K1GH
31 + G32K2GH

32| − r2,

log
∣
∣
∣It1 +

(1

2
GH

21G21 + GH
31G31

)
K1

∣
∣
∣
}

and RDT (which corresponds to σ 2 = ∞). As in the case
of partial decode–forward, considering more values of σ 2 can
further improve the bound at the cost of complexity.

B. Numerical Results

We consider the additive and multiplicative gaps on 2000
2 × 2 MIMO relay channels with random channel gains
independently distributed according to CN(0, 1). The gaps
are evaluated by relaxed bounds discussed in the previous
subsection. The maximum and average of the additive gaps
plotted against the power constraint P at the sender and the
relay are shown in Fig. 2 and similar multiplicative gaps
are shown in Fig. 3. The simulation results are consistent
with the theoretical predictions in Theorems 1, 2, and 3, and
Proposition 4.

VI. HALF-DUPLEX MIMO RELAY CHANNELS

Half-duplex relay channel models are often investigated
to study wireless communication systems in which relays
cannot send and receive in the same time slot or frequency
band. In this section, we consider the time-division half-
duplex relay channel model proposed by Kramer [21], which
has been recently extended to MIMO relay networks by
Cardone et al. [23], with minor modifications. In this model,
the relay has a total of a2 antennas, each of which can
either transmit or receive at a given time. Let Si ∈ {0, 1},
i = 1, . . . , a2, denote the operation of antenna i at the relay,
say, Si = 0 means the antenna is in the receiving mode
and Si = 1 means the antenna is in the transmitting mode.
Then, the channel outputs at the relay and the receiver can be
expressed as

Y2 = D̄(S)G21X1 + Z2,

Y3 = G31X1 + G32 D(S)X2 + Z3, (49)
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Fig. 3. The multiplicative gaps between the cutset bound and the partial
decode–forward and compress–forward lower bounds for randomly generated
2 × 2 MIMO relay channels.

where G21 ∈ Ca2×t1 , G31 ∈ Cr3×t1 , and G32 ∈ Cr3×a2

are channel gain matrices, X1 ∈ Ct1 and X2 ∈ Ca2 are
the respective inputs at the sender and the relay, and Z2 ∼
CN(0, Ia2) and Z3 ∼ CN(0, Ir3 ) are independent complex
Gaussian noise components. Here and henceforth, we use the
shorthand notation D(S) = diag(S) and D̄(S) = Ia2 − D(S)
to represent the antenna mode vector S = (S1, . . . , Sa2) and
its complement in matrix forms.

Assume that the relay can dynamically choose the antenna
modes based on its channel outputs. Then this model can be
viewed as a special case of the general relay channel with the
equivalent channel input (X2, S) at the relay. This observation
leads to the following upper bound on the capacity.

Proposition 10 (Cutset Bound [21]): The capacity C of the
time-division half-duplex MIMO relay channel in (49) is upper
bounded by

RCS = sup min
{

I (X1, X2, S; Y3), I (X1; Y2, Y3|X2, S)
}

= sup min
{

I (S; Y3) + I (X1, X2; Y3|S),

I (X1; Y2, Y3|X2, S)
}
, (50)

where the suprema are over all pmfs p(s) and conditional cdfs
F(x1, x2|s) such that E(XH

1 X1) ≤ P and E(XH
2 D(S)X2) ≤ P.

This bound can be further upper bounded by

sup
p(s),K (s)

min(a2 + J1, J2), (51)

where the supremum is over all pmfs p(s) and (t1 + a2) ×
(t1 + a2) matrix-valued functions K (s) such that

K (s) =
[

K1(s) K12(s)
K H

12(s) K2(s)

]
� 0, s ∈ {0, 1}a2,

(52)
E[tr(K1(S))] =

∑

s

p(s) tr(K1(s)) ≤ P, (53)

E[tr(D(S)K2(S))] =
∑

s

p(s) tr(D(s)K2(s)) ≤ P. (54)

Here,

J1 = E
(
log |Ir3 + [G31 G32 D(S)]K (S)[G31 G32 D(S)]H|),

J2 = E
(
log |It1 + (GH

21 D̄(S)G21 + GH
31G31)K1|2(S)|),

and K1|2(S) = K1(S) − K12(S)K −1
2 (S)K H

12(S).

The partial decode–forward coding scheme can achieve the
following lower bound.

Proposition 11 (PartialDecode–ForwardLowerBound [21]):
The capacity C of the time-division half-duplex MIMO relay
channel is lower bounded by

RPDF

= sup min{I (X1, X2, S; Y3),

I (U; Y2|X2, S) + I (X1; Y3|X2, U, S)
}

= sup min
{

I (X1, X2, S; Y3),

I (X1; U, Y3|X2, S) − I (X1; U|X2, Y2, S)
}

where the suprema are over all pmfs p(s) and condi-
tional cdfs F(u, x1, x2|s) such that E(XH

1 X1) ≤ P and
E(XH

2 D(S)X2) ≤ P.
Similarly, the compress–forward coding scheme can achieve

the following lower bound.
Proposition 12 (Compress–Forward Lower Bound [22]):

The capacity C of the time-division half-duplex MIMO relay
channel is lower bounded by

RCF

= sup min{I (X1, X2, S; Y3) − I (Y2; Ŷ2|X1, X2, S, Y3),

I (X1; Ŷ2, Y3|X2, S)}
≥ sup min{I (X1, X2; Y3|S) − I (Y2; Ŷ2|X1, X2, S, Y3),

I (X1; Ŷ2, Y3|X2, S)}, (55)

where the suprema are over all pmfs p(s) and conditional
cdfs F(x1|s)F(x2|s)F(ŷ2|y2, x2, s) such that E(XH

1 X1) ≤ P
and E(XH

2 D(S)X2) ≤ P.
Comparing the cutset upper bound and the partial decode–

forward lower bound, we can establish the following gap
result.

Proposition 13: For every G21, G31, G32, and P,

�PDF := C − RPDF ≤ min(t1, a2) (56)

and

RCS

RPDF
≤ 2. (57)

Proof: The multiplicative gap in (57) follows immediately
from Proposition 9. For the additive gap in (56), we adapt
Proposition 8 by setting U = D̄(S)G21X1 + Z′

2, where Z′
2 ∼

CN(0, Ia2) is independent of (X1, X2, S, Z2, Z3). Then,

�PDF

≤ sup
p(s)F(x1,x2|s)

I (X1; U|X2, Y2, S)

= sup
p(s)F(x1,x2|s)

h(U|X2, Y2, S) − h(U|X1, X2, Y2, S)

= sup
p(s)F(x1,x2|s)

h(U|X2, Y2, S) − h(Z′
2)

= sup
p(s)F(x1,x2|s)

∑

s

p(s)(h(U|X2, Y2, S = s) − h(Z′
2)).
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Now following arguments similar to those in Subsection III-A,
we have for each s

h(U|X2, Y2, S = s) − h(Z′
2)

≤ sup
K (s)

log
|It1 + 2GH

21 D̄(s)G21 K1|2(s)|
|It1 + GH

21 D̄(s)G21 K1|2(s)|
≤ min(t1, a2),

where the supremum is over all covariance matrices K (s) of
the form (52). This completes the proof of (56).

An additive gap that is somewhat weaker than (56) can
be established by comparing the cutset upper bound and the
compress–forward lower bound, which still improves upon the
existing gap result of 1.96(t1 + a2 + r3) in [23].

Proposition 14: For every G21, G31, G32, and P,

�CF = C − RCF

≤ min
σ 2

max
[
min

(
t1 + max

[
0, a2 log

2σ 2

1 + σ 2

]
, r3

)

+ a2 log(2(1 + 1/σ 2)),

min(t1, a2) log(1 + σ 2)
]

(58)

≤ min(t1 + 2a2, a2 log 3 + r3). (59)
Proof: Let Ŷ2 = D̄(S)Y2+Ẑ2, where Ẑ2 ∼ CN(0, σ 2 Ia2)

is independent of X1, X2, S, Z2, and Z3. Consider any
(p(s), K (s)) satisfying (52)–(54). Given {S = s}, let X1 ∼
CN(0, K1(s)) and X2 ∼ CN(0, K2(s)) be conditionally
independent. Then, we have

I (X1; Ŷ2, Y3|X2, S = s)

= log

∣∣
∣
∣Ir2+r3 +

[
D̄(s)G21√

1+σ 2

G31

]

K1(s)

[
D̄(s)G21√

1+σ 2

G31

]H∣∣
∣
∣

≥ log |It1 + (GH
21 D̄(s)G21 + GH

31G31)K1(s)|
− min(t1, r2) log(1 + σ 2), (60)

where t2 = ∑a2
i=1 si denotes the number of transmitting

antennas and r2 = a2 − t2 denotes the number of receiving
antennas when s ∈ {0, 1}a2 is the antenna mode vector.
Similarly,

I (X1, X2; Y3|S = s)

= log |Ir3 + G31K1(s)GH
31 + G32 D(s)K2(s)D(s)GH

32|
≥ log |Ir3 + [G31 G32 D(s)]K (s)[G31 G32 D(s)]H|

− min(t1 + t2, r3), (61)

and

I (Y2; Ŷ2|X1, X2, Y3, S = s) = r2 log(1 + 1/σ 2). (62)

Subtracting (62) from (61) and comparing it with a2 + J1
in (51) before taking the expectation, we can obtain the gap

min(t1 + t2, r3) + r2 log(1 + 1/σ 2) + a2

≤ min
(

t1 + t2 log
2σ 2

1 + σ 2 , r3

)
+ a2 log(2(1 + 1/σ 2))

≤ min
(

t1 + max
[
0, a2 log

2σ 2

1 + σ 2

]
, r3

)

+ a2 log(2(1 + 1/σ 2)). (63)

Similarly, comparing (60) with J2 in (51), we obtain the
gap

min(t1, a2) log(1 + σ 2). (64)

Combining (63) and (64) and considering all possible σ 2,
we can establish (58). Finally, setting σ 2 = 2 in (58)
yields (59).

As a final remark, we note that similar additive and
multiplicative gap results can be established for fixed time-
division and frequency-division half-duplex relay channel
models [6], [10], [25, Secs. 16.6.3 and 16.8]. We refer the
reader to [6, Th. 8.3] and an earlier conference version [24]
of this paper for such results.
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