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Abstract— A new coding scheme for general N-node relay
networks is presented for unicast, multicast, and broadcast.
The proposed distributed decode–forward scheme combines and
generalizes Marton coding for single-hop broadcast channels and
the Cover–El Gamal partial decode–forward coding scheme for
three-node relay channels. The key idea of the scheme is to
precode all the codewords of the entire network at the source by
multicoding over multiple blocks. This encoding step allows these
codewords to carry partial information of the messages implicitly
without complicated rate splitting and routing. This partial
information is then recovered at the relay nodes and forwarded
further. For N-node Gaussian unicast, multicast, and broadcast
relay networks, the scheme achieves within 0.5N bits from the
cutset bound, and thus from the capacity (region), regardless
of the network topology, channel gains, or power constraints.
Roughly speaking, distributed decode–forward is dual to noisy
network coding, which generalized compress–forward to unicast,
multicast, and multiple access relay networks.

Index Terms— Decode—forward, discrete memoryless net-
work, Gaussian network, network coding, relaying, capacity.

I. INTRODUCTION

S INCE van der Meulen [1] studied the 3-node relay channel
model in the context of mathematical communication

theory, numerous relaying schemes have been proposed in the
literature. Among these, decode–forward [2, Th. 1], compress–
forward [2, Th. 6], and amplify–forward [3], [4] are par-
ticularly well studied and form a basis for other schemes.
With different principles (digital-to-digital, analog-to-digital,
and analog-to-analog, respectively) and relative strengths over
each other, the three relaying schemes have been extended
beyond the 3-node relay channel and the 4-node diamond
network [3], [4] with varying degrees of generality in operation
and scalability in performance. Their generality and scalabil-
ity (or the lack thereof) depend heavily on the underlying
network topology and message configurations (e.g., unicast,
multicast, multiple access, broadcast, and multiple unicast).
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Amplify–forward can be readily applied to an arbitrary
Gaussian multihop network to transform it into a single-hop
network with intersymbol interference, regardless of the
message configuration. Despite its high score in generality,
amplify–forward fails to achieve scalable performance
as its achievable rate can have an unbounded gap from
capacity in most cases, except for a handful of special
examples (cf. [5]–[7]).

Compress–forward has been extended to general noisy
networks by the network compress–forward scheme [8] and
the noisy network coding scheme [9], [10], the latter of which
was motivated by the quantize–map–forward scheme [11] for
Gaussian relay networks. For the multiple access message
configuration (many senders communicating their messages
to a single receiver over multiple hops) and its multicast
extension (now to multiple receivers, each demanding the
same set of messages), the noisy network coding scheme
scores high in performance scalability. For example, noisy
network coding achieves within 0.63N bits of capacity for
an arbitrary N-node Gaussian multiple access relay network,
regardless of the network topology, channel gains, or power
constraints. The main drawback of noisy network coding
is noise propagation—the quantization noise at each relay
accumulates over multiple hops. Moreover, it is not known
whether or how noisy network coding (or any network exten-
sion of compress–forward) can achieve scalable performance
for other message configurations, most notably, broadcast and
multiple unicast.

Decode–forward, with its all digital operations, does
not suffer much noise propagation as in compress–
forward or amplify–forward (consider, for example, a cas-
cade of point-to-point channels) and is expected to score the
highest in performance scalability. For a general relay net-
work with (single-message) unicast and multicast, it has been
extended by the network decode–forward scheme [8], [12],
which achieves the capacity when the channel is physically
degraded. The scheme, however, has been extended rarely
beyond unicast or multicast, and performs rather poorly in
those few exceptions (cf. [13], [14, Sec. 19.1.2]). There are
two main challenges in extending decode–forward to multiple
messages in a general and scalable manner. First, the complete
message decoding requirement at all (or some) of the relays
is often too stringent. Second, when there is more than one
message (multiple access, broadcast, or multiple unicast), it is
unclear how the message should be routed; in other words,
which relay should be assigned to forward which message.

For the 3-node relay channel, partial decode–forward
[2, Th. 7], [15] provides a solution to the first challenge
by splitting the message into two parts and letting the
relay forward one of them. This new degree of freedom
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in operation, however, makes the second challenge of who
forwards what more intractable even for unicast. Consequently,
except for a few extensions for special channel models
(see [16, Secs. 3.4 and 3.5], [17], [18] for unicast examples
and [8, Remark 17] for a broadcast example), partial decode–
forward has not been extended to general relay networks.

Our discussion thus far leads to the following two questions:
1) Can we employ relay decoding (partial or complete),

which would propagate less noise, for general networks
with multiple messages?

2) How can we achieve scalable performance for message
configurations beyond multiple access, for example, for
broadcast or multiple unicast?

In this paper, we provide one and a half satisfactory
answers to these questions by developing the distributed
decode–forward coding scheme. For the one, the distrib-
uted decode–forward scheme generalizes partial decode–
forward to arbitrary networks, answering the first question
(cf. [14, Open problem 18.3]). For the half, the distributed
decode–forward scheme generalizes Marton’s coding scheme
for single-hop broadcast channels to multihop broadcast relay
networks. In particular, the scheme achieves the capacity
region of the general Gaussian broadcast relay network uni-
formly within 0.5N bits per dimension, which refines the
previous result by Kannan et al. [19]. For graphical multi-
cast networks, the scheme achieves the network capacity as
dictated by the network coding theorem [20]. In this sense,
the distributed decode–forward scheme unifies and extends
Marton coding, network coding, and partial decode–forward
relaying to general multihop networks.

The most immediate motivation of our work comes from
the aforementioned work by Kannan et al. [19] on determin-
istic and Gaussian broadcast relay networks. The approach
taken in the current paper, as is usually the case with any
successor, is more general and versatile. In particular, the
distributed decode–forward scheme is a “single-letter” coding
scheme directly applicable to arbitrary network models and its
performance has a clean analytic expression that can be easily
compared to the cutset bound [21], [22, Th. 15.10.1].

The distributed decode–forward scheme uses multicoding
(see, for example, [23], [16, Ch. 3], [24]) as the main tool to
overcome the aforementioned challenge of extending partial
decode–forward to networks, namely, the complexity of coor-
dination among distributed nodes. More specifically, the source
node encodes all the messages with compatible codewords and
a priori controls the transmission over the entire network.
These compatible codewords are chosen, however, via mul-
ticoding, which allows the codewords to carry information
of some part of the messages implicitly. As a side note,
the coding scheme by Kannan et al. [19] also employs mul-
ticoding at the source and decoding at relays (at a multiletter
level), despite the prima facie observation that the essence of
their scheme is quantization (compress–forward), not decoding
(decode–forward).

The rest of the paper is organized as follows. In the next
section, we formally define the problem and present the main
results. In Sections III and IV, we develop and analyze the
distributed decode–forward scheme for unicast and broadcast,

Fig. 1. The N -node discrete memoryless broadcast network.

respectively. The results on Gaussian networks are established
in Section V. Comparison with the noisy network coding
scheme is discussed in Section VI, which is followed by some
concluding remarks in Section VII.

Throughout the paper, we use the notation in [14].
In particular, a sequence of random variables with node index
k and time index i ∈ [1 : n] := {1, . . . , n} is denoted
by Xn

k := (Xk1, . . . , Xkn). A tuple of random variables is
denoted by X (A) := (Xk : k ∈ A). For a set A ∈ [1 : N],
the complement Ac is taken with respect to [1 : N]. Given a
set of nodes S ⊆ [1 : N], we often use the notation

Sk = S ∩ [1 : k − 1] and Sc
k = (Sc)k = Sc ∩ [1 : k − 1].

II. PROBLEM SETUP AND THE MAIN RESULTS

The N-node discrete memoryless network (DMN)
(X1 × · · · × XN , p(y N |x N ),Y1 × · · · × YN ) consists of N
sender–receiver alphabet pairs (Xk,Yk), k ∈ [1 : N], and
a collection of conditional pmfs p(y1, . . . , yN |x1, . . . , xN ).
The noise, interference, and broadcast effects in the
communication as well as the network topology (that is,
which nodes can communicate directly to which other nodes)
are defined through the structure of this conditional pmf
p(y1, . . . , yN |x1, . . . , xN ).

Suppose that a single source node (node 1) wishes to
communicate messages M(D) = (Mk : k ∈ D) over the DMN
p(yN |x N ), where message Mk is intended to be recovered
at node k and D ⊆ [2 : N] is the set of destination
nodes, as depicted in Fig. 1. Throughout this paper, we refer
to this setting as the discrete memoryless broadcast relay
network (DM-BRN). The practical motivation of this model
arises from downlink communication for cloud radio access
networks [25]–[28] and for distributed antenna systems with
joint processing [29].

The ((2nRk : k ∈ D), n) code for the DM-BRN consists of
• |D| message sets [1 : 2nRk ], k ∈ D,
• a source encoder that assigns a symbol x1i (m(D), yi−1

1 )
to each message tuple m(D) = (mk ∈ [1 : 2nRk ] : k ∈ D)
and received sequence yi−1

1 ∈ Y i−1
1 for i ∈ [1 : n],

• a set of relay encoders, where encoder k ∈ [2 : N] assigns
xki (yi−1

k ) to each yi−1
k for i ∈ [1 : n], and

• a set of decoders, where decoder k ∈ D assigns an
estimate m̂k or an error message e to each yn

k .
The performance of the code is measured by the average
probability of error

P(n)
e = P{M̂k �= Mk for some k ∈ D},
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where the messages are uniformly distributed and independent
of each other. A rate tuple (Rk : k ∈ D) is said to be achievable
if there exists a sequence of ((2nRk : k ∈ D), n) codes such
that limn→∞ P(n)

e = 0. The capacity region of the DM-BRN
is the closure of the set of achievable rate tuples.

We are particularly interested in the following special cases
of the general DM-BRN:

1) The discrete memoryless unicast relay network
(DM-URN): D = {N}.

2) The DM-BRN with complete destination set:
D = {2, . . . , N}.

3) The discrete memoryless relay channel (DM-RC):
N = 3, D = {3}, and Y1 = X3 = ∅.

4) The discrete memoryless broadcast channel (DM-BC):
Y1 = X2 = · · · = X N = ∅.

5) The deterministic BRN: Yk = gk(X1, . . . , X N ),
k ∈ [1 : N].

6) The Gaussian BRN:

Yk = gk1 X1 + · · · + gkN X N + Zk, k ∈ [1 : N], (1)

where gkj is the channel gain from node j to
node k, and Z1, . . . , Z N are independent Gaussian
noise components with zero mean and unit variance.
We assume average power constraint P on each Xk ,
i.e.,

∑n
i=1 E(x2

1i(m(D), Y i−1
1 )) ≤ n P , mk ∈ [1 : 2nRk ],

k ∈ D, and
∑n

i=1 E(x2
ki (Y

i−1
k )) ≤ n P , k ∈ [2 : N].

In the following, we first present the results on unicast
relay networks, which are further developed into multicast, and
then present the results on general broadcast relay networks.
In addition to pedagogical benefits, this gradual treatment
allows for standalone results tailored to the unicast case that
are stronger than straightforward corollaries obtained from the
results on the more general broadcast network.

A. Unicast Relay Networks

Theorem 1 (Distributed Decode–Forward Lower Bound for
Unicast): The capacity C is lower bounded as

C ≥ max
p(x N ,uN

2 ,q)
min
S

{
I (X (S); U(Sc), YN |X (Sc), Q)

−
∑

k∈Sc

[
I (Uk ; U(Sc

k ), X N |Xk, Yk, Q)

+ I (Xk; X (Sc
k )|Q)

]}
, (2)

where the minimum is over all S ⊆ [1 : N] such that 1 ∈ S,
N ∈ Sc.

The proof of Theorem 1, along with the description and
analysis of the associated distributed decode–forward coding
scheme, is deferred to Section III. The capacity lower bound
in (2) of Theorem 1 has a similar structure to the cutset
bound [22, Th. 15.10.1],

C ≤ max
p(x N )

min
S⊆[1:N]:

1∈S,N∈Sc

I (X (S); Y (Sc)|X (Sc)). (3)

Compared to (3), the first term of (2) has the auxiliary random
variables Uk instead of Yk (except YN ) and the additional

term quantifies the cost of multicoding (namely, inducing
dependence among codewords).

We consider a few special cases of Theorem 1. First,
when specialized to the DM-RC by setting N = 3
and Y1 = X3 = U3 = ∅, Theorem 1 recovers the
partial decode–forward lower bound [2, Th. 7] (see also
[15] and [14, Th. 16.3]). Thus, distributed decode–forward
extends partial decode–forward to networks, answering a ques-
tion raised in [14, Open problem 18.3].

Corollary 1 (Partial Decode–Forward for the DM-RC): The
capacity of the DM-RC p(y2, y3|x1, x2) is lower bounded as

C ≥ max
p(x1,x2,u2)

min
{

I (X1, X2; Y3),

I (X1; U2, Y3 |X2) − I (U2; X1 |X2, Y2)
}

= max
p(x1,x2,u2)

min
{

I (X1, X2; Y3),

I (X1; Y3 |X2, U2) + I (U2; Y2 |X2)
}
.

As another simple example, consider the 4-node diamond
network [3], [4].

Corollary 2 (Diamond Network): The capacity of the
DM diamond network p(y2, y3|x1)p(y4|x2, x3) is lower
bounded as

C ≥ max
p(x1,x2,x3,u2,u3)

min
{

I (X1, X2, X3; Y4),

I (X1, X2; U3, Y4 |X3)

− I (U3; X1, X2 |Y3, X3),

I (X1, X3; U2, Y4 |X2)

− I (U2; X1, X3 |Y2, X2),

I (X1; U2, U3, Y4 |X2, X3)

− I (U2; X1, X3 |Y2, X2)

− I (U3; X1, X2, U2 |Y3, X3)

− I (X2; X3)
}

≥ max
p(x1,u2,u3)p(x2,x3)

min
{

I (X2, X3; Y4),

I (X2; Y4 |X3) + I (U3; Y3),

I (X3; Y4 |X2) + I (U2; Y2),

I (U2; Y2) + I (U3; Y3)

− I (U2; U3) − I (X2; X3)
}
.

Example 1 (Gaussian Diamond Network): Consider the
relay network

Y2 = g21X1 + Z2,

Y3 = g31X1 + Z3,

Y4 = g42 X2 + g43X3 + Z4,

where the noise components Zk , k = 2, 3, 4, are i.i.d. N(0, 1)
independent of (X1, X2, X3). The channel gain coefficients gkj

are assumed to be real positive numbers, constant as a function
of time, and known throughout the network. We assume power
constraint P on each sender and denote the SNR for the
signal from node k to node j as Sjk = g2

j k P . Suppose that

in Corollary 2 we set X1 ∼ N(0, P), U j = g j1X1 + Ẑ j ,
j = 2, 3, where Ẑ j ∼ N(0, σ 2

j ) are independent of each other
and of (X1, Y2, Y3). In addition, suppose that (X2, X3) are
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zero-mean jointly Gaussian, independent of (X1, U2, U3), with
E[X2

j ] = P , j = 2, 3, and E[X2 X3] = ρP , 0 ≤ ρ ≤ 1. This
choice of the input distribution does not attain the maximum in
Corollary 2, but as will be shown in Subsection II-D achieves
the cutset bound within a constant gap when σ 2

2 , σ 2
3 , and ρ are

properly chosen. The distributed decode–forward lower bound
in Corollary 2 now reduces to

C ≥ max
ρ,σ 2

2 ,σ 2
3 >0

min
{
C(S42 + S43 + 2ρ

√
S42S43),

C((1 − ρ2)S42) + I3,

C((1 − ρ2)S43) + I2,

I2 + I3 − I4
}
, (4)

where

I2 = 1

2
log

(
(1 + S21)(σ

2
2 + S21)

σ 2
2 + (1 + σ 2

2 )S21

)

,

I3 = 1

2
log

(
(1 + S31)(σ

2
3 + S31)

σ 2
3 + (1 + σ 2

3 )S31

)

,

I4 = 1

2
log

(σ 2
2 + S21)(σ

2
3 + S31)

(σ 2
2 σ 2

3 + σ 2
2 S31 + σ 2

3 S21)(1 − ρ2)
.

We compare the distributed decode–forward lower bound
with the noisy network coding lower bound [10] (under the
Gaussian distribution)

C ≥ max
σ 2

2 ,σ 2
3 >0

min
{
C

( S21(1 + σ 2
3 ) + S31(1 + σ 2

2 )

(1 + σ 2
2 )(1 + σ 2

3 )

)
,

C(S42) + C
( S31

1 + σ 2
3

)
− C

( 1

σ 2
2

)
,

C(S43) + C
( S21

1 + σ 2
2

)
− C

( 1

σ 2
3

)
,

C(S42 + S43) − C
( 1

σ 2
2

)
− C

( 1

σ 2
3

)}
, (5)

and the amplify–forward lower bound

C ≥C
( (√

S21S42(S31 + 1) + √
S31S43(S21 + 1)

)2

S42(S31 + 1) + S43(S21 + 1) + (S21 + 1)(S31 + 1)

)

. (6)

The pure decode–forward scheme achieves the lower bound

C ≥ min
{
C(S21), C(S31), C(S42 + S43 + 2

√
S42 S43)

}
. (7)

Suppose now that nodes 1 and 4 are unit distance apart,
node 2 is at distance d ∈ [0, 1], and node 3 is at distance
(1 − d) ∈ [0, 1] from node 1 along the line between
nodes 1 and 4 (see Fig. 2). The channel gains are of the form
g jk = d−3/2

j k , where d jk is the distance between nodes j and k,
hence g21 = g43 = d−3/2, g31 = g42 = (1 − d)−3/2, and the
power is P = 10. Fig. 3 compares the cutset bound [14]
on the capacity with the lower bounds achieved by distrib-
uted decode–forward (4), noisy network coding (5), amplify–
forward (6), and decode–forward (7), respectively. Recall that
both the distributed decode–forward lower bound and the noisy
network coding lower bound are evaluated under Gaussian
distributions that are potentially suboptimal but still achieve
constant gaps from the cutset bound for general Gaussian
unicast relay networks.

Fig. 2. Location of the source, relays, and destination nodes. The distance
between nodes 1 and 2 is d, distance between nodes 1 and 3 is 1 − d, and
the distance between nodes 1 and 4 is 1.

Fig. 3. Comparison of the cutset bound, the decode–forward lower
bound (DF), the amplify–forward lower bound (AF), the noisy network coding
lower bound (NNC), and the distributed decode–forward lower bound (DDF)
for the Gaussian diamond network as a function of the distance d where
g21 = g43 = d−3/2 and g31 = g42 = (1 − d)−3/2.

Next, when the channel is deterministic, we can set
Uk = Yk , k ∈ [2 : N], in Theorem 1 to establish the following.

Corollary 3 (Deterministic URN): If Yk = gk(X1, . . . , X N ),
k ∈ [2 : N], the capacity C is lower bounded as

C ≥ max
p(x N )

min
S⊆[1:N]:

1∈S,N∈Sc

H (Y (Sc)|X (Sc)) −
∑

k∈Sc

I (Xk; X (Sc
k )).

(8)

This lower bound has the same form as the cutset bound (see,
for example, [14, Sec. 18.3.1])

C ≤ max
p(x N )

min
S :1∈S,N∈Sc

H (Y (Sc)|X (Sc))

except for the negative term. With the maximum taken over
pmfs of the form p(x N

2 ) = ∏n
k=2 p(xk), the lower bound

simplifies to

C ≥ max
(
∏N

k=2 p(xk))p(x1|xn
2 )

min
S :1∈S,N∈Sc

H (Y (Sc)|X (Sc)). (9)

Accordingly, if the cutset bound is attained by a pmf of the
same form, then the lower bound in (9) is tight. For example,
for graphical networks [14, Ch. 15], Corollary 3 simplifies to
the max-flow min-cut theorem [30].

B. Extension to Multicast

Before we move on to the broadcast case, we digress
briefly to discuss how our unicast results can be generalized
to the multicast setting in which the source node wishes to
communicate the single message to a set of destination nodes
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D ⊆ [2 : N]. As demonstrated by Ahlswede et al. [20], random
coding allows each receiver in a multicast network to recover
the common message up to its own unicast rate. Consequently,
the proof of Theorem 1 can be adapted in a straightforward
manner to establish the following.

Corollary 4 (Distributed Decode–Forward Lower Bound
for Multicast): The capacity of the DM multicast relay network
is lower bounded as

C ≥ max
p(x N ,uN

2 ,q)
min
d∈D

min
S

I (X (S); U(Sc), Yd |X (Sc), Q)

−
∑

k∈Sc

[
I (Uk; U(Sc

k ), X N |Xk, Yk , Q)

+ I (Xk; X (Sc
k )|Q)

]
, (10)

where the minimum over S is for all S ⊆ [1 : N] such that
1 ∈ S, d ∈ Sc.

Corollaries 1 and 3 can be similarly extended to the multi-
cast case. In particular, when specialized to graphical net-
works, this extension recovers the celebrated network coding
theorem [20], but from a completely different path.

C. Broadcast Relay Networks

Theorem 2 (Distributed Decode–Forward Inner Bound for
Broadcast): A rate tuple (Rk : k ∈ D) is achievable for the
DM-BRN p(yN |x N ) with destination set D ⊆ [2 : N] if

∑

k∈Sc∩D
Rk < I (X (S); U(Sc)|X (Sc), Q)

−
∑

k∈Sc

[
I (Uk; U(Sc

k ), X N |Xk, Yk , Q)

+ I (Xk; X (Sc
k )|Q)

]
(11)

for all S ⊆ [1 : N] such that 1 ∈ S and Sc ∩D �= ∅ for some
p(x N , uN

2 , q).
The proof of Theorem 2 is deferred to Section IV. As in

the unicast case, the capacity inner bound (11) in Theorem 2
has a similar structure to the cutset bound [22, Th. 15.10.1]
characterized by

∑

k∈Sc∩D
Rk ≤ I (X (S); Y (Sc)|X (Sc)), (12)

for all S ⊆ [1 : N] such that Sc ∩ D �= ∅ for some p(x N ).
Remark 1: When specialized to the unicast case, Theorem 2

simplifies to Theorem 1 without YN in (2), resulting in
potential rate loss.

We now discuss more interesting special cases. First, when
every node k ∈ [2 : N] is a destination, i.e., D = [2 : N],
we have N = [1 : N], Sc ∩D = Sc and Theorem 2 simplifies
to the following.

Corollary 5 (Complete Destination Set): A rate tuple
(Rk : k ∈ D) is achievable for the DM-BRN p(yN |x N ) with
destination set D = [2 : N] if

∑

k∈Sc

Rk < I (X (S); U(Sc)|X (Sc), Q)

−
∑

k∈Sc

[
I (Uk ; U(Sc

k ), X N |Xk, Yk , Q)

+ I (Xk; X (Sc
k )|Q)

]
(13)

Fig. 4. The deterministic broadcast channel with conferencing links.

for all S ⊆ [1 : N] such that 1 ∈ S and Sc �= ∅ for some pmf
p(x N , uN

2 , q).
Next, by setting Y1 = X2 = · · · = X N = ∅ in (13),

Corollary 5 recovers the classical result by Marton for single-
hop broadcast channels [23]; see Appendix A for the proof.

Corollary 6 (Marton’s Inner Bound for the DM-BC Without
Common Codeword): A rate tuple (R2, . . . , RN ) is achievable
for the DM-BC p(yN

2 |x1) if

∑

k∈Sc

Rk <
∑

k∈Sc

[
I (Uk ; Yk) − I (Uk ; U(Sc

k ))
]

(14)

for all S ⊆ [1 : N] such that 1 ∈ S and Sc �= ∅ for some pmf
p(uN

2 ) and function x1(uN
2 ).

When the channel is deterministic, we can set Uk = Yk ,
k ∈ [2 : N], in Theorem 2 to establish the following.

Corollary 7 (Deterministic BRN): When Yk =
gk(X1, . . . , X N ), k ∈ [2 : N], a rate tuple (Rk : k ∈ D) is
achievable if

∑

k∈Sc∩D
Rk < H (Y (Sc)|X (Sc)) −

∑

k∈Sc

I (Xk ; X (Sc
k )) (15)

for all S ⊆ [1 : N] such that 1 ∈ S and Sc ∩D �= ∅ for some
pmf p(x N ).

This result refines a recent result of
Kannan et al. [19, Th. 2] in which the input pmf was
restricted to the form p(x N ) = ∏N

k=1 p(xk). The bound
in (15) is tight if the cutset bound is attained by the product
input pmf. Note that when specialized to graphical networks,
the result by Kannan et al. [19, Th. 2] as well as the more
general Corollary 7 recovers the broadcast capacity region
established by Federgruen and Groenevelt [31].

As another application of Corollary 7, consider the two-
receiver deterministic broadcast channel with cooperating
receivers depicted in Fig. 4. Node 1 wishes to send private
messages to nodes 2 and 3. The source-to-destination channel
is a deterministic broadcast channel y2(x1), y3(x1) and there
are noiseless links of capacities C23 and C32 from node 2 to
node 3 and vice versa. The capacity region is established
by the cutset bound and a straightforward specialization
of Corollary 7, and consists of all rate pairs (R2, R3)
such that

R2 ≤ H (Y2) + C32,

R3 ≤ H (Y3) + C23, (16)

R2 + R3 ≤ H (Y2, Y3)

for some p(x1).
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Example 2 (Capacity of the Blackwell Channel With Coop-
erating Receivers): Consider a two-user deterministic broad-
cast channel in which the source-to-destination channel is the
Blackwell channel [32] specified by

Y2 =
{

0, X1 = 0 or 2,

1, X1 = 1,

Y3 =
{

0, X1 = 0,

1, X1 = 1 or 2.

By (16), the capacity region consists of all rate pairs (R2, R3)
such that

R2 ≤ H (α, 1 − α) + C32,

R3 ≤ H (β, 1 − β) + C23,

R2 + R3 ≤ H (α, β, 1 − α − β)

for some α, β ≥ 0 such that α + β ≤ 1. This result extends
the capacity region of the partially cooperating Blackwell
channel (i.e., C23 = 0) investigated in [33].

In [34], a general coding scheme was developed for general
cooperative broadcast channels based on decode–forward and
superposition coding. For the cooperative Blackwell channel
in Example 2, this scheme is strictly suboptimal since super-
position coding fails to achieve the capacity region of the
Blackwell channel without conferencing. Thus, for this partic-
ular channel, the special case of distributed decode–forward
outperforms the coding scheme in [34]. This dominance is,
however, not universal since neither superposition coding nor
Marton coding without a common part outperforms the other
when there is no conferencing (C23 = C32 = 0).

D. Gaussian Networks

Our results hitherto on the DM-BRN can be easily adapted
to the Gaussian network model in (1). In Section V, we estab-
lish the following.

Theorem 3 (Distributed Decode–Forward Inner Bound for
the Gaussian BRN): A rate tuple (Rk : k ∈ D) is achievable
for the Gaussian BRN if

∑

k∈Sc∩D
Rk <

1

2
log | I + PG(S)GT (S)|

−
∑

k∈Sc

1

2
log

(

1 + Sk

1 + Sk

)

(17)

for all S ⊆ [1 : N] such that 1 ∈ S and Sc ∩ D �= ∅, where
Sk = ∑

j �=k g2
kj P denotes the received SNR at node k and the

channel gain submatrix G(S) is defined through
[

Y (S)
Y (Sc)

]

=
[

G′(S) G(Sc)
G(S) G′(Sc)

] [
X (S)
X (Sc)

]

+
[

Z(S)
Z(Sc)

]

. (18)

Similar results can be established for unicast (by either
starting from Theorem 1 or specializing Theorem 3) and
multicast (by extending the unicast case). The cutset bound
for the Gaussian BRN is characterized by

∑

k∈Sc∩D
Rk ≤ 1

2
log | I + G(S)K (S)GT (S)| (19)

for some K � 0 with K j j ≤ P , j ∈ [1 : N], where
K (S) denotes the submatrix of K over the indices in S. By
comparing the cutset bound and Theorem 3, we establish the
following gap result in Section V.

Corollary 8 (Gaussian Capacity Gap): For the Gaussian
BRN, if a rate tuple (Rk : k ∈ D) is in the cutset bound in (19),
then the rate tuple (Rk − 0.5N : k ∈ D) is achievable, regard-
less of the channel gain matrix G and power constraint P.

Similar gap results of 0.5N can be established for unicast
and multicast, which improves upon the existing gap result
of 0.63N achieved by noisy network coding [10, Th. 4]. For
broadcast, Corollary 8 improves upon the existing gap result
of O(N log(N)) by Kannan et al. [19, Th. 1].

III. PROOF OF THEOREM 1

First, we prove the achievability of

R < min
S⊆[1:N]:

1∈S, N∈Sc

{
I (X (S); U(Sc), YN |X (Sc), Q)

−
∑

k∈Sc

[
I (Uk; U(Sc

k ), X N |Xk, Yk, Q)

+ I (Xk ; X (Sc
k )|Q)

]}
(20)

for any pmf p(x N , uN
2 , q) such that

0 ≤ min
S⊆[1:N]:

1∈S,Sc �=∅

{
I (X (S); U(Sc)|X (Sc), Q)

−
∑

k∈Sc

[
I (Uk ; U(Sc

k ), X N |Xk, Yk, Q)

+ I (Xk ; X (Sc
k )|Q)

]}
. (21)

We will later show that the constraint (21) on the pmf is
inactive.

For simplicity, we consider the case Q = ∅. Achievability
for an arbitrary Q can be proved using coded time shar-
ing [14, Sec. 4.5.3]. We use a block Markov coding scheme
in which a sequence of (b − 1) i.i.d. messages M j , j ∈
[1 : b − 1], is sent over b blocks each consisting of n
transmissions. For each block, we generate codewords Un

k ,
k ∈ [2 : N], to be recovered at relay k. Using multicoding [23],
[14, Secs. 7.8 and 8.3], we design these codewords to be
dependent among themselves and on the transmitted code-
words Xn

1 , . . . , Xn
N . The key difference from multicoding for

single-hop networks is that here multicoding is performed
sequentially over multiple blocks via backward encoding,
which guarantees the desired dependence under the block
Markov codebook structure. Unlike partial decode–forward,
there is no need for these codewords to have any layered
superposition structure. In fact, the scheme does not keep track
of which relay recovers exactly which part of the message
from which node; relay k recovers some part of the message
rather implicitly by recovering Un

k . The recovered part of the
message, captured by an auxiliary index, is then forwarded in
the next block.

We now give a detailed description of the coding scheme
and provide the analysis on the probability of error.
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TABLE I

ENCODING AND DECODING OF THE DISTRIBUTED DECODE–FORWARD CODING SCHEME FOR UNICAST

A. Codebook Generation

Fix p(x N , uN
2 ). Randomly and independently gener-

ate a codebook for each block j ∈ [1 : b]
as follows. Randomly and independently generate 2nR̂k

sequences xn
k (lk, j−1) according to

∏n
i=1 pXk (xki ) for k ∈

[2 : N]; 2n(R+R̃) sequences xn
1 (m j , t j , l j−1) accord-

ing to
∏n

i=1 pX1|X N
2
(x1i |x2i(l2, j−1), . . . , xNi (lN, j−1)) for

each l j−1 := (l2, j−1, . . . , lN, j−1); and 2nR̂k sequences
un

k (lkj |lk, j−1) according to
∏n

i=1 pUk |Xk (uki |xki (lk, j−1)) for
k ∈ [2 : N]. Here the values of the indices are m j ∈ [1 : 2nR],
t j ∈ [1 : 2nR̃], and lk, j−1, lkj ∈ [1 : 2nR̂k ], k ∈ [2 : N]. The
codebooks are revealed to all parties.

Encoding and decoding are explained with the help
of Table I. Here the arrows indicate the direction of sequen-
tial encoding and decoding steps. For example, in the
“multicoding” row, the arrows indicate that we start the encod-
ing procedure for block b first by finding the indices (tb, lb−1)
that makes the codewords jointly typical, then move on to
block b −1 and so forth. The X1 row indicates the codewords
that are sent by the source node, the Yk row indicates the
recovered indices in each block, the Xk row indicates the
codewords that are sent by node k, and the YN row indicates
the recovered indices at the destination node via backward
decoding.

B. Encoding

The encoding procedure consists of three steps—
multicoding, initialization, and actual transmission. For
j = b, b − 1, . . . , 1, given m j , find an index tuple (t j , l j−1)
such that

(xn
1 (m j , t j , l j−1), xn

2 (l2, j−1), . . . , xn
N (lN, j−1),

un
2(l2 j |l2, j−1), . . . , un

N (lN j |lN, j−1)) ∈ T (n)
ε′ ,

successively with the initial condition mb = tb = 1 and
lb = (1, . . . , 1). If there is more than one such index tuple,
select one of them arbitrarily. If there is none, let
(t j , l j−1) = (1, . . . , 1).

Before the actual transmission of the messages, we use
additional (N − 1)2 blocks to transmit each lk0 to node
k ∈ [2 : N] using multihop coding. The additional transmission
needed for this phase is in the order of O(nN2), independent
of b. Thus, the actual transmission rate converges to R as
b → ∞. In the following, we assume that all lk0 indices are
known prior to transmission.

To communicate the message m j in block j ,
the sender (node 1) transmits xn

1 (m j , t j , l j−1), where t j

and l j−1 are the indices found in the first step.

C. Relay Encoding

Let ε > ε′. At the end of block j , relay node k ∈ [2 : N],
upon receiving yn

k ( j), finds the unique index l̃k j ∈ [1 : 2nR̂k ]
such that

(un
k (l̃k j |l̃k, j−1), xn

k (l̃k, j−1), yn
k ( j)) ∈ T (n)

ε ,

where l̃k, j−1 is from the previous block. If there is
none or more than one index, set l̃k j = 1. In the next
block (block j + 1), node k transmits xn

k (l̃k j ).

D. Backward Decoding

Decoding at the receiver (node N) is done backwards after
all b blocks are received. For j = b, b − 1, . . . , 1, find the
unique tuple (m̂ j , l̂ j−1) based on l̂N, j−1 = l̃N, j−1 from relay
encoding, l̂ j from the previous decoding step, and yn

N ( j) such
that

(xn
1 (m̂ j , t̂ j , l̂ j−1), xn

2 (l̂2, j−1), . . . , xn
N (l̂N, j−1),

un
2(l̂2 j |l̂2, j−1), . . . , un

N (l̂N j |l̂N, j−1), yn
N ( j)) ∈ T (n)

ε

for some t̂ j ∈ [1 : 2nR̃], successively with the initial condition
m̂b = t̂b = 1 and l̂b = (1, . . . , 1).

E. Analysis of the Probability of Error

Let M j be the message, Tj and L j be the indices chosen
at the source, and L̃ j be the indices chosen at the relays.
The decoder makes an error if one or more of the following
events occur:

E0 = {
(Xn

1 (M j , t j , l j−1), Xn
2 (l2, j−1), . . . , Xn

N (lN, j−1),

Un
2 (L2 j |l2, j−1), . . . , Un

N (L N j |lN, j−1)) �∈ T (n)
ε′

for all t j , l j−1 for some j ∈ [1 : b]},
E1 = {

L̃kj �= Lkj for some k ∈ [2 : N], j ∈ [1 : b]},
E2 = {

(Xn
1 (M j , Tj , L j−1), Xn

2 (L2, j−1), . . . , Xn
N (L N, j−1),

Un
2 (L2 j |L2, j−1), . . . , Un

N (L N j |L N, j−1),

Y n
N ( j)) �∈ T (n)

ε for some j ∈ [1 : b]},
E3 = {

(Xn
1 (m j , t j , l j−1), Xn

2 (l2, j−1), . . . , Xn
N (lN, j−1),

Un
2 (L2 j |l2, j−1), . . . , Un

N (L N j |lN, j−1), Y n
N ( j)) ∈ T (n)

ε

for some t j , (m j , l j−1) �= (M j , L j−1) and j ∈ [1 : b]}.



4110 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 7, JULY 2017

The probability of error (averaged over the random codebook
generation and messages) is upper bounded as

P(E) ≤ P(E0) + P(E1 ∩ Ec
0 ) + P(E2 ∩ Ec

0 ∩ Ec
1 ) + P(E3).

(22)

We bound each term. First, by a direct application of the
properties of multivariate typicality [14, Sec. 2.5], induction
on backward encoding, and steps similar to those of the
multivariate covering lemma [14, Lemma 8.2], the probability
of P(E0) → 0 as n → ∞ if

R̃ +
N∑

k=2

R̂k >

N∑

k=2

[
I (Uk ; Uk−1, X N |Xk) + I (Xk ; Xk−1)

]

+ δ(ε′), (23)

and

∑

k∈Ŝc

R̂k >
∑

k∈Ŝc

[
I (Uk; U(Ŝc

k ), X (Ŝc)|Xk) + I (Xk; X (Ŝc
k ))

]

+ δ(ε′) (24)

for all Ŝ ⊂ [2 : N], where Ŝc = [2 : N] \ Ŝ
(here and henceforth) and Ŝc

k = Ŝc ∩ [1 : k − 1]
(as in our standing notation). The formal proof of this
step is given in Appendix B. By the initialization step,
the conditional typicality lemma [14, Sec. 2.5], the packing
lemma [14, Sec. 3.2], and induction on j ∈ [1 : b], the
probability P(E1 ∩ Ec

0) tends to zero as n → ∞ if

R̂k < I (Uk ; Yk |Xk) − δ(ε), k ∈ [2 : N]. (25)

The probability P(E2 ∩ Ec
0 ∩ Ec

1 ) tends to zero as n → ∞ due
to the codebook construction and the conditional typicality
lemma. Finally, by the union of events bound, induction on
backward decoding, and the joint typicality lemma, the last
term P(E3) tends to zero as n → ∞ if

R + R̃ +
∑

k∈Ŝ
R̂k < I (X1, X (Ŝ); U(Ŝc), YN |X (Ŝc))

+
∑

k∈Ŝ

[
I (Uk ; U(Ŝk), U(Ŝc), X N |Xk)

+ I (Xk; X (Ŝk), X (Ŝc))
] − δ(ε)

(26)

for all Ŝ ⊆ [2 : N] such that N ∈ Ŝc. Thus, the probability of
decoding error tends to zero as n → ∞ if (23) through (26) are
satisfied. Finally, in order to obtain the conditions on the mes-
sage rate R and the joint pmf p(x N , uN

2 ) as in (20) and (21),
respectively, we eliminate the auxiliary rates R̂2, . . . , R̂k and
R̃, define S := {1} ∪ Ŝ , and take ε → 0, as shown in detail
in Appendix C. This completes the first step of the proof,
establishing the achievability of rates satisfying (20) and (21).

As the final step of the proof, we show in Appendix D that
the constraint (21) is inactive.

IV. PROOF OF THEOREM 2

The proof of Theorem 2 consists of multiple steps. First,
we consider the case D = [2 : N], which illuminates the
coding scheme at the minimal cost of notation, and establish
Corollary 5. Second, by setting some rates to zero, we establish
a capacity inner bound in (11) with some constraints on the
joint pmf p(x N , uN

2 , q), which can be shown to be inactive.

A. Step 1: Distributed Decode–Forward for Broadcast
With the Complete Destination Set

The coding scheme for broadcast is conceptually similar to
the unicast scheme, but differs in the following three aspects.
First, the messages are embedded in the auxiliary codewords
Un

k instead of the source codeword Xn
1 . Second, Xn

1 now does
not involve in multicoding and serves as a simple interface
from the auxiliary codewords to the channel as in Marton
coding [23]. Third, the decoding step is simpler and performed
in the forward direction. We now describe the coding scheme
with a sketch of its performance analysis. For simplicity,
we consider the case Q = ∅. Achievability for an arbitrary
Q can be proved using coded time sharing [14, Sec. 4.5.3].

1) Codebook Generation: Fix p(x N , uN
2 ). Randomly and

independently generate a codebook for each block j ∈
[1 : b] as follows. Randomly and independently generate
2nR̂k sequences xn

k (lk, j−1) according to
∏n

i=1 pXk (xki ) for

k ∈ [2 : N]; 2n(Rk+R̂k) sequences un
k (mkj , lkj |lk, j−1) according

to
∏n

i=1 pUk |Xk (uki |xki (lk, j−1)) for each lk, j−1, k ∈ [2 : N];
and a sequence xn

1 (m j , l j , l j−1) according to

n∏

i=1

pX1|X N
2 ,U N

2
(x1i |u2i(m2 j , l2 j |l2, j−1), . . . ,

uNi (mN j , lN j |lN, j−1), x2i (l2, j−1), . . . , xNi (lN, j−1))

for each m j := (m2 j , . . . , mN j ), l j := (l2 j , . . . , lN j ), and
l j−1. Here the values of the indices are mkj ∈ [1 : 2nRk ],
lk, j−1, lkj ∈ [1 : 2nR̂k ], k ∈ [2 : N]. The codebooks are revealed
to all parties.

Encoding and decoding are explained with the help
of Table II.

2) Encoding: The encoding procedure consists of three
steps—multicoding, initialization, and actual transmission. For
j = b, b − 1, . . . , 1, given m j , find an index tuple l j−1 such
that

(xn
2 (l2, j−1), . . . , xn

N (lN, j−1),

un
2(m2 j , l2 j |l2, j−1), . . . , un

N (mN j , lN j |lN, j−1)) ∈ T (n)
ε′ ,

successively with the initial conditions mb = (1, . . . , 1)
and lb = (1, . . . , 1). Following similar arguments to those
in Section III, it can be shown that this encoding step is
successful with high probability (w.h.p.) if
∑

k∈Ŝc

R̂k >
∑

k∈Ŝc

[
I (Uk; U(Ŝc

k ), X (Ŝc)|Xk) + I (Xk ; X (Ŝc
k ))

]

+ δ(ε′) (27)

for all Ŝc ⊆ [2 : N], where Ŝc = [2 : N] \ Ŝ and
Ŝc

k = Ŝc ∩[1 : k −1]. First communicate l0 to nodes 2, . . . , N .
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TABLE II

ENCODING AND DECODING OF THE DISTRIBUTED DECODE–FORWARD CODING SCHEME FOR BROADCAST

Then communicate the message tuple m j in block j by
transmitting xn

1 (m j , l j , l j−1), where (l j , l j−1) is the index
tuple chosen earlier.

3) Decoding and Relay Encoding: Let ε > ε′. At the end
of block j = 1, . . . , b, node k ∈ [2 : N] finds the unique pair
(m̂kj , l̂k j ) based on l̂k, j−1 from the previous step and yn

k ( j)
such that

(un
k (m̂kj , l̂k j |l̂k, j−1), xn

k (l̂k, j−1), yn
k ( j)) ∈ T (n)

ε ,

and declares m̂kj as its message estimate. This decoding step
is successful w.h.p. if

Rk + R̂k < I (Uk ; Yk |Xk) − δ(ε), k ∈ [2 : N]. (28)

In the next block (block j + 1), node k transmits xn
k, j+1(l̂k j ).

By setting R̂k = I (Uk; Yk |Xk)− Rk − 2δ(ε) to satisfy (28),
eliminating it from (27), rewriting the conditions with
S = {1} ∪ Ŝ, and taking ε → 0, we have shown that any
rate tuple (R1, . . . , RN ) satisfying

∑

k∈Sc

Rk < I (X (S); U(Sc)|X (Sc))

−
∑

k∈Sc

[
I (Uk ; U(Sc

k ), X N |Xk, Yk)

+ I (Xk ; X (Sc
k ))

]
(29)

for all S ⊆ [1 : N] such that 1 ∈ S and Sc �= ∅ is achievable.
By including a time sharing random variable, our argument so
far is tantamount to a standalone proof of Corollary 5.

B. Step 2: Towards a General Destination Set by Projection

Given a destination set D ⊆ [2 : N], we set Rk = 0, k �∈ D,
in (29). Thus, any rate tuple (Rk : k ∈ D) is achievable if

∑

k∈Sc∩D
Rk < I (X (S); U(Sc)|X (Sc), Q)

−
∑

k∈Sc

[
I (Uk; U(Sc

k ), X N |Xk, Yk , Q)

+ I (Xk ; X (Sc
k )|Q)

]
(30)

for all S ⊆ [1 : N] such that 1 ∈ S and Sc ∩D �= ∅ for some
pmf p(x N , uN

2 , q) satisfying

0 < I (X (S); U(Sc)|X (Sc), Q)

−
∑

k∈Sc

[
I (Uk ; U(Sc

k ), X N |Xk, Yk, Q)

+ I (Xk ; X (Sc
k )|Q)

]
(31)

for all S ⊆ [1 : N] such that 1 ∈ S and Sc ∩D = ∅. Note that
the rate region in (30) is identical to the rate region in (11)

except for the constraint (31) on the pmf. By continuity of
mutual information, the inequalities in (31) can be relaxed
to be nonstrict. Finally, we show in Appendix E that the
constraint (31) is inactive.

V. GAUSSIAN BROADCAST RELAY NETWORKS

Theorem 2 for the DM-BRN can be readily extended to the
Gaussian BRN by incorporating the cost constraint and using
the standard discretization method [14, Secs. 3.4 and 3.8].
In (11), we set Xk , k ∈ [1 : N], to be i.i.d. N(0, P),
and

Uk = gk1 X1 + · · · + gkN X N + Ẑk, k ∈ [2 : N], (32)

where Ẑk ∼ N(0, 1), k ∈ [2 : N], are mutually independent
and independent of (X N , Y N ). Note from (18) that U N

2 and
Y N

2 have the same distribution and are conditionally indepen-
dent given X N . Then,

I (X (S); U(Sc)|X (Sc)) = I (X (S); Y (Sc)|X (Sc))

= 1

2
log | I + PG(S)GT (S)|

and

I (Uk ; U(Sc
k ), X N |Xk, Yk) = I (Uk ; X N |Xk, Yk)

= 1

2
log

(

1 + Sk

1 + Sk

)

≤ 1

2
,

where Sk = ∑
j �=k g2

kj P . Plugging these into (11) estab-
lishes the inner bound in Theorem 3, which can be further
relaxed to

∑

k∈Sc∩D
Rk <

1

2
log | I + PG(S)GT (S)| − |Sc|

2
. (33)

To prove Corollary 8, we relax the cutset bound in (19) as

1

2
log | I + G(S)K X (S)G

T (S)| ≤ 1

2
log | I + PGT (S)G(S)|

+ 1

2
log

∣
∣
∣I + 1

P
K X (S)

∣
∣
∣

(a)≤ 1

2
log | I + PG(S)GT (S)|

+ |S|
2

, (34)

where K X (S) is the covariance matrix of X (S) and (a) follows
by the Hadamard inequality. Comparing the inner and outer
bounds, we can conclude that distributed decode–forward
achieves within 0.5N bits per dimension from the cutset bound
and thus from the capacity region.
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TABLE III

COMPARISON BETWEEN THE DISTRIBUTED DECODE–FORWARD AND NOISY NETWORK CODING INNER BOUNDS

Remark 2: If we set (X1, . . . , X N ) ∼ N(0, K ) with
E[X2

k ] = ρ2
k ≤ P , k ∈ [1 : N], and (Ẑ2, . . . , Ẑ N ) ∼ N(0,�)

with E[Ẑ2
k ] = σ 2

k > 0 in (32), then the corresponding inner
bound in Theorem 3 is characterized by

∑

k∈Sc∩D
Rk <

1

2
log |�(Sc) + G(S)K (S |Sc)GT (S)|

−
∑

k∈Sc

[
1

2
log

(

σ 2
k + Sk

1 + Sk

)

+ 1

2
log ρ2

k

]

+ 1

2
log |K (Sc)| (35)

where K (Sc) and �(Sc) are the covariance matrices of X (Sc)
and Ẑ(Sc), respectively, K (S|Sc) is the conditional covariance
matrix of X (S) given X (Sc), and

Sk = Var(Yk − Zk |Xk) = Var(
∑

j �=k gkj X j |Xk).

Compared to the previous choice of K = P I and � = I , the
improvement can be significant. For example, the gap from
capacity for the two-hop N-relay diamond network can be
tightened from O(N) to O(log N) as reported in [18].

Remark 3: The results in Theorem 3 and Corollary 8 can
be readily extended to Gaussian vector (MIMO) broadcast
networks. In particular, distributed decode–forward achieves
within 0.5T bits from the capacity for a Gaussian vector
broadcast network with total T antennas (cf. [35]).

VI. DISCUSSION

As a dual setting to the broadcast relay network, con-
sider the multiple access relay network p(y N |x N ), in which
source nodes k ∈ [2 : N] communicate independent
messages to the common destination node 1 as depicted
in Fig. 5. This is a special case of the multimessage multicast
network [14, Sec. 18.4] and the noisy network coding
scheme [9], [10], [36] yields a capacity inner bound that
consists of all rate tuples (R2, . . . , RN ) such that

∑

k∈S
Rk < I (X (S); Ŷ (Sc), Y1 |X (Sc))

− I (Y (S); Ŷ (S)|X N , Ŷ (Sc), Y1) (36)

for all S ⊆ [1 : N] such that 1 ∈ Sc and S �= ∅ for
some pmf

∏N
k=1 p(xk)p(ŷk|yk, xk). This noisy network coding

inner bound in (36) can be readily compared to the distributed
decode–forward inner bound in Corollary 5, which is repeated

Fig. 5. The N -node discrete memoryless multiple access network.

here and is characterized by
∑

k∈Sc

Rk < I (X (S); U(Sc)|X (Sc))

−
∑

k∈Sc

[
I (Uk; U(Sc

k ), X N |Xk, Yk)

+ I (Xk; X (Sc
k ))

]
(37)

for all S ⊆ [1 : N] such that 1 ∈ S and Sc �= ∅ for
some p(x N , uN

2 ).
The correspondence between two bounds is apparent. The

first term in (36) has an auxiliary random variable Ŷ j , which
is to be encoded at node j and to be decoded at the destination
node 1. In comparison, the first term in (37) has an auxiliary
random variable U j , which is to be encoded at source node 1
and to be decoded at node j . In addition, the second term
in (36) quantifies the cost of decoding Ŷ j at the destination
node, while the second term in (37) quantifies the cost of
encoding U j at the source node. We highlight some of the
obvious correspondences between (36) and (37) in Table III.

This duality between the two inner bounds is also reflected
by the operations of the coding schemes. In noisy network
coding, the sources and the relays are relatively simple, but
the major burden is on the destination to recover the messages
and the compression indices from the entire network. Thus,
this scheme fits well with uplink multihop communication.
In distributed decode–forward, the relays and the destinations
are relatively simple, but the source needs to precode depen-
dent codewords for the entire network. Thus, this scheme
fits well with downlink multihop communication. This oper-
ational reciprocity in the roles of source and destination
for multiple access and broadcast has been well noted by
Kannan et al. [19], which was the key intuition for their coding
scheme that parallels the quantize–map–forward scheme by
Avestimehr et al. [11].
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VII. CONCLUDING REMARKS

Consider the N-node relay network p(y N |x N ) with
3N − 2N+1 + 1 messages (flows) M f between every possible
pair of disjoint source–destination sets (S f ,D f ). This setting
includes all standard channel coding problems studied in
network information theory and is, in some sense, the most
general network communication problem. Finding the capacity
region (optimal tradeoff between flow rates) seems to be
intractable, with several results [37], [38] in the literature
hinting that a computable expression may not exist even for
simple special cases. A natural next step is to develop a
“good” coding scheme and, through it, provide a “reasonable”
approximation of the capacity region.

When there are multiple flows from distinct sources to
a common destination set (e.g., unicast, multicast, multiple
access), noisy network coding and the cutset bound pro-
vide a reasonable approximation of the capacity. When there
are multiple flows from a common source set to distinct
destinations (e.g., unicast, multicast, broadcast), distributed
decode–forward and the cutset bound provide a reasonable
approximation of the capacity. Both developments trace back
to two canonical coding schemes for the 3-node relay channel,
namely, compress–forward and partial decode–forward, and
their combination [2, Th. 7]; see [39] for a combination of
noisy network coding and distributed decode–forward for a
general unicast relay network.

With these developments, the second question we asked
earlier in Section I should now read:
2′) How can we achieve scalable performance for message

configurations beyond multiple access and broadcast, for
example, for broadcast with a common message and
multiple unicast?

Broadcast with a common message (multiple flows to dis-
tinct destinations and a single flow to all destinations) can be
viewed as the simplest combination of multicast and broadcast.
Nonetheless, the problem seems to be quite challenging even
for graphical networks; see, for example, [40], [41]. So far it
is unclear how distributed decode–forward can be adapted to
this setting.

Multiple unicast (multiple flows from distinct sources to
distinct destinations) brings up several new challenges to
capacity approximation. On the one hand, the cutset bound for
multiple unicast can be significantly improved in general by
the directed cutset bound [42], which can be still quite loose
even for index coding [43], [44], which is a simple special
case of graphical networks. On the other hand, no classical
coding schemes or their variations have been successfully
extended to multiple unicast, a few existing results based on
structured coding [45]–[48] are mostly sui generis [49], [50]
and difficult to combine with random coding schemes such as
noisy network coding. A new coding scheme is on order.

APPENDIX A
PROOF OF COROLLARY 6

Consider

I (X1; U(Sc)) −
∑

k∈Sc

I (Uk; U(Sc
k ), X1 |Yk)

=
∑

k∈Sc

I (Uk; X1 |U(Sc
k )) −

∑

k∈Sc

I (Uk ; U(Sc
k ), X1 |Yk)

(a)=
∑

k∈Sc

[
I (Uk; X1 |U(Sc

k )) − I (Uk ; U(Sc
k ), X1) + I (Uk; Yk)

]

=
∑

k∈Sc

[
I (Uk; Yk) − I (Uk ; U(Sc

k ))
]
,

where (a) follows since U N
2 → X1 → Yk form a

Markov chain.

APPENDIX B
ANALYSIS OF P(E0) IN (22)

By the union of events bound, we have

P(E0) ≤
b∑

j=1

P
{
(Xn

1 (M j , t j , l j−1), Xn
2 (l2, j−1), . . . ,

Xn
N (lN, j−1), Un

2 (L2 j |l2, j−1), . . . ,

Un
N (L N j |lN, j−1)) �∈ T (n)

ε′ for all t j , l j−1
}

≤ b P
{
(Xn

1 (t, l), (Un
2 , Xn

2 )(l2), . . . ,

(Un
N , Xn

N )(lN )) �∈ T (n)
ε′ for all t, l

}
, (38)

where (Un
k , Xn

k )(lk), lk ∈ [1 : 2nR̂k ], are distributed inde-
pendently according to

∏n
i=1 pUk,Xk (uki , xki ), k ∈ [2 :

N], and for each l = (l2, . . . , lN ), Xn
1 (t, l), t ∈ [1 :

2nR̃], are distributed conditionally independently according to∏n
i=1 pX1|X N

2
(x1i |x2i(l2), . . . , xNi (lN )).

Let

A = {(t, l) : (Xn
1 (t, l), (Un

2 , Xn
2 )(l2), . . . ,

(Un
N , Xn

N )(lN )) ∈ T (n)
ε′ }.

Then, by the Chebyshev lemma [14, Appendix B], the prob-
ability in (38) is upper bounded as

P{|A| = 0} ≤ Var(|A|)
(E |A|)2 . (39)

Using indicator random variables, we express |A| as

|A| =
∑

t,l

E(t, l),

where

E(t, l) =

⎧
⎪⎨

⎪⎩

1 if (Xn
1 (t, l), (Un

2 , Xn
2 )(l2), . . . ,

(Un
N , Xn

N )(lN )) ∈ T (n)
ε′ ,

0 otherwise.

Denote l = 1 if lk = 1, k ∈ [2 : N]. Similarly, for Ŝ ⊆ [2 : N],
denote l = 2(Ŝ) if lk = 2, k ∈ Ŝ , and lk = 1, k ∈ Ŝc. Let

p1 = P{E(1, 1) = 1},
p2(Ŝ) = P{E(1, 1) = 1, E(1, 2(Ŝ)) = 1}, Ŝ ⊆ [2 : N],
p3(Ŝ) = P{E(1, 1) = 1, E(2, 2(Ŝ)) = 1}, Ŝ ⊆ [2 : N].

Then

E(|A|) =
∑

t,l

P{E(t, l) = 1} = 2n(R̃+R̂N
2 ) p1
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and

E(|A|2)

=
∑

t,l

∑

t ′,l′
P{E(t, l) = 1, E(t ′, l′) = 1}

=
∑

t,l

P{E(t, l) = 1}

+
∑

t,l

∑

Ŝ⊆[2:N]:
Ŝ �=∅

∑

l′:l′k �=lk
iff k∈Ŝ

P{E(t, l) = 1, E(t, l′) = 1}

+
∑

t,l

∑

t ′ �=t

∑

Ŝ⊆[2:N]

∑

l′:l′k �=lk
iff k∈Ŝ

P{E(t, l) = 1, E(t ′, l′) = 1}

≤ 2n(R̃+R̂N
2 ) p1 +

∑

Ŝ⊆[2:N]:
Ŝ �=∅

2n(R̃+R̂N
2 +R̂(Ŝ)) p2(Ŝ)

+
∑

Ŝ⊆[2:N]
2n(2R̃+R̂N

2 +R̂(Ŝ)) p3(Ŝ),

where R̂N
2 = ∑N

k=2 R̂k and R̂(Ŝ) = ∑
k∈Ŝ Rk . Since

p3([2 : N]) = p2
1,

Var(|A|) = E(|A|2) − (E(|A|))2

≤ 2n(R̃+R̂N
2 ) p1 +

∑

Ŝ⊆[2:N]:
Ŝ �=∅

2n(R̃+R̂N
2 +R̂(Ŝ)) p2(Ŝ)

+
∑

Ŝ⊆[2:N]:
Ŝ �=[2:N]

2n(2R̃+R̂N
2 +R̂(Ŝ)) p3(Ŝ).

Now it can be checked by the joint typicality lemma [14] that,
for n sufficiently large, we have

p1 ≥ 2−n(I+δ(ε′)),

p2(Ŝ) ≤ 2−n(I+J (Ŝ)−δ(ε′)), Ŝ ⊆ [2 : N], Ŝ �= ∅,

p3(Ŝ) ≤ 2−n(I+J (Ŝ)−δ(ε′)), Ŝ ⊆ [2 : N], Ŝ �= [2 : N],
where

I = H (X1 |X N
2 ) +

N∑

k=2

H (Uk, Xk) − H (X1, X N
2 , U N

2 ),

J (Ŝ) = H (X1 |X N
2 ) +

∑

k∈Ŝ
H (Uk, Xk)

− H (X1, U(Ŝ), X (Ŝ)|U(Ŝc), X (Ŝc)),

and Ŝc = [2 : N] \ Ŝ. Therefore,

Var(|A|)
(E |A|)2 ≤ 2−n(R̃+R̂N

2 −I−δ(ε′))

+
∑

Ŝ⊆[2:N]:
Ŝ �=∅

2−n(R̃+R̂(Ŝc)−I+J (Ŝc)−3δ(ε′))

+
∑

Ŝ⊆[2:N]:
Ŝ �=[2:N]

2−n(R̂(Ŝc)−I+J (Ŝc)−3δ(ε′)),

which tends to zero as n → ∞ if

R̃ + R̂N
2 >

N∑

k=2

[
I (Uk ; Uk−1, X N |Xk) + I (Xk ; Xk−1

2 )
]

+ δ(ε′), (40)

R̃ + R̂(Ŝc) >
∑

k∈Ŝc

H (Uk, Xk) − H (U(Ŝc), X (Ŝc)) + 3δ(ε′)

=
∑

k∈Ŝc

[
I (Uk ; U(Ŝc

k ), X (Ŝc)|Xk)

+ I (Xk ; X (Ŝc
k ))

] + 3δ(ε′), (41)

for all Ŝ ⊆ [2 : N], Ŝ �= ∅ and,

R̂(Ŝc) >
∑

k∈Ŝc

[
I (Uk; U(Ŝc

k ), X (Ŝc)|Xk)

+ I (Xk ; X (Ŝc
k ))

] + 3δ(ε′) (42)

for all Ŝ ⊆ [2 : N], Ŝ �= [2 : N].
Finally, note that the condition in (41) is inactive since it is

implied by (42) and R̃ > 3δ(ε′).

APPENDIX C
ELIMINATION OF AUXILIARY RATES IN SECTION III

To obtain the condition on the message rate R alone,
we eliminate the auxiliary rates R̂2, . . . , R̂k and R̃ from (23)
through (26). Recalling (25), let

R̂k = I (Uk ; Yk |Xk) − 2δ(ε), k ∈ [2 : N]. (43)

Then substituting (43) into (23) and (24) yields

R̃ >

N∑

k=2

[
I (Uk; Uk−1, X N |Xk, Yk) + I (Xk ; Xk−1

2 )
]

+ 2Nδ(ε) + δ(ε′), (44)

0 >
∑

k∈Ŝc

[
I (Uk; U(Ŝc

k ), X (Ŝc)|Xk) + I (Xk ; X (Ŝc
k ))

− I (Uk ; Yk |Xk)
] + 2|Ŝc |δ(ε) + δ(ε′) (45)

for all Ŝ ⊂ [2 : N]. Similarly, substituting (43) into (26) yields

R + R̃ < I (X1, X (Ŝ); U(Ŝc), YN |X (Ŝc))

+
∑

k∈Ŝ

[
I (Uk; U(Ŝk), U(Ŝc), X N |Xk, Yk)

+ I (Xk ; X (Ŝk), X (Ŝc))
]

+ 2(|Ŝ | − 1)δ(ε) (46)

for all Ŝ ⊆ [2 : N] such that N ∈ Ŝc. By further eliminating
R̃, we obtain the inequalities

R < I (X1, X (Ŝ); U(Ŝc), YN |X (Ŝc))

×
∑

k∈Ŝc

[
I (Uk ; U(Ŝc

k ), X N |Xk, Yk) + I (Xk ; X (Ŝc
k ))

]

− 2|Ŝc |δ(ε) − δ(ε′) (47)
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for all Ŝ ⊆ [2 : N] such that N ∈ Ŝc, and

0 < I (X1, X (Ŝ); U(Ŝc)|X (Ŝc))

−
∑

k∈Ŝc

[
I (Uk ; U(Ŝc

k ), X N |Xk, Yk) + I (Xk ; X (Ŝc
k ))

]

− 2|Ŝc |δ(ε) − δ(ε′) (48)

for all Ŝ ⊂ [2 : N]. Here, (47) follows by combining (44)
and (46), and applying the chain rule

N∑

k=2

[
I (Uk ; Uk−1, X N |Xk, Yk) + I (Xk; Xk−1

2 )
]

=
∑

k∈Ŝc

[
I (Uk ; U(Ŝc

k ), X N |Xk, Yk) + I (Xk ; X (Ŝc
k ))

]

+
∑

k∈Ŝ

[
I (Uk ; U(Ŝk), U(Ŝc), X N |Xk, Yk)

+ I (Xk; X (Ŝk), X (Ŝc))
]
.

Inequality (48) follows by rewriting (45) with
∑

k∈Ŝc

[
I (Uk ; U(Ŝc

k ), X (Ŝc)|Xk) − I (Uk ; Yk |Xk)
]

=
∑

k∈Ŝc

[
I (Uk ; U(Ŝc

k ), X N |Xk)

− I (Uk; X1, X (Ŝ)|X (Ŝc), U(Ŝc
k )) − I (Uk; Yk |Xk)

]

=
∑

k∈Ŝc

I (Uk ; U(Ŝc
k ), X N |Xk, Yk)

−
∑

k∈Ŝc

I (Uk; X1, X (Ŝ)|X (Ŝc), U(Ŝc
k ))

=
∑

k∈Ŝc

I (Uk ; U(Ŝc
k ), X N |Xk, Yk)

− I (X1, X (Ŝ); U(Ŝc)|X (Ŝc)).

Further rewriting (47) and (48) with S = {1} ∪ Ŝ and Sc =
[1 : N] \ S, we have

R < I (X (S); U(Sc), YN |X (Sc))

−
∑

k∈Sc

[
I (Uk ; U(Sc

k ), X N |Xk, Yk) + I (Xk ; X (Sc
k ))

]

− 2|Sc |δ(ε) − δ(ε′), (49)

for all S ⊆ [1 : N] such that 1 ∈ S, N ∈ Sc and

0 < I (X (S); U(Sc)|X (Sc))

−
∑

k∈Sc

[
I (Uk ; U(Sc

k ), X N |Xk, Yk) + I (Xk ; X (Sc
k ))

]

− 2|Sc |δ(ε) − δ(ε′) (50)

for all S ⊆ [1 : N] such that 1 ∈ S and Sc �= ∅. By taking
ε → 0 and using the continuity of mutual information, we can
conclude that any rate satisfying

R < I (X (S); U(Sc), YN |X (Sc))

−
∑

k∈Sc

[
I (Uk ; U(Sc

k ), X N |Xk, Yk) + I (Xk; X (Sc
k ))

]
(51)

for all S ⊆ [1 : N] such that 1 ∈ S, N ∈ Sc is achievable
under any pmf p(x N , uN

2 ) satisfying

0 ≤ I (X (S); U(Sc)|X (Sc))

−
∑

k∈Sc

[
I (Uk ; U(Sc

k ), X N |Xk, Yk) + I (Xk; X (Sc
k ))

]
(52)

for all S ⊆ [1 : N] such that 1 ∈ S.

APPENDIX D
REMOVING THE CONSTRAINT (21)

We first define some notation that will be used throughout
this section. Let N = [1 : N] and for S ⊆ N , let

I (S) := I (X (S); YN |X (Sc), U(Sc), Q), (53)

J (S) := I (X (S); U(Sc)|X (Sc), Q)

−
∑

k∈Sc

[
I (Uk; U(Sc

k ), X N |Xk, Yk , Q)

+ I (Xk ; X (Sc
k )|Q)

]
(54)

= H (U(Sc), X (Sc)|Q)

−
∑

k∈Sc

[
H (Uk |Xk, Yk, Q) + H (Xk |Q)

]
. (55)

Then, (20) and (21) can be rewritten as

R < max min
S⊆N :

1∈S,N∈Sc

I (S) + J (S), (56)

where the maximum is over all joint pmfs p(x N , uN
2 , q) such

that

J (S) ≥ 0, S ⊆ N , 1 ∈ S. (57)

In the following, we will show that the maximum in (56) is
attained by only considering the distributions that satisfy (57).

Lemma 1: Let (X N , U N
2 , Q) ∼ p(x N , uN

2 , q) such that
J (A) < 0 for some A ⊂ N with 1 ∈ A. Then, there exists
(X̃ N , Ũ N

2 , Q̃) ∼ p(x̃ N , ũN
2 , q̃) such that J̃ (A) ≥ 0,

min
S⊆N :

1∈S,N∈Sc

I (S) + J (S) < min
S⊆N :

1∈S,N∈Sc

Ĩ (S) + J̃ (S), (58)

min
S⊆N :1∈S

J (S) < min
S⊆N :1∈S

J̃(S), (59)

where Ĩ (S) and J̃ (S) are (53) and (54) evaluated with
(X̃ N , Ỹ N , Ũ N

2 , Q̃) in place of (X N , Y N , U N
2 , Q), respectively,

and Ỹ N are the channel output corresponding to the input X̃ N .
It follows from Lemma 1 that for any achievable rate

attained by a distribution with J (A) < 0 for some A, there
exists another distribution such that J̃ (A) ≥ 0 while strictly
increasing the rate and distribution constraints (58) and (59).
By repeatedly applying Lemma 1 until J (S) ≥ 0 for all
S ⊆ N such that 1 ∈ S, we can conclude that a strictly
higher rate is achieved by a distribution that satisfies the
constraint (57).

It remains to establish Lemma 1. We only spell out the
proof of (58) since the proof of (59) follows essentially the
same steps. To this end, suppose the maximum in (56) that is
attained by (X N , U N

2 , Q) ∼ p(x N , uN
2 , q) such that J (A) < 0

for some A ⊂ N with 1 ∈ A. If there is no such A, then there
is nothing to prove. Let (X̃ N , Ũ(A\{1}), Q̂) be an identically
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distributed copy of (X N , U(A \ {1}), Q). Let Ũ(Ac) = ∅
and Q̃ = (Q̂, X̃(Ac)). In other words, (X̃ N , Ũ N

2 , Q̃) is
an identically distributed copy of (X N , U N

2 , Q), except that
Ũ(Ac) is knocked off and Q̃ is augmented with X̃(Ac).
With this choice of random variables, it is easy to check that
J̃ (A) = 0. To establish the inequality in (58), consider

min
S⊆N :

1∈S,N∈Sc

I (S) + J (S)

≤ min
S⊆N :

1∈S,N∈Sc

I (S ∩ A) + J (S ∩ A) (60)

< min
S⊆N :

1∈S,N∈Sc

Ĩ (S) + J̃(S), (61)

where the first inequality holds since 1 ∈ (S ∩ A) ⊆ N , and
the second inequality holds since

I (S ∩ A) = I (X (S∩ A); YN |X ((S∩ A)c), U((S∩ A)c), Q)

= I (X (S); YN |X (Ac), X (Sc), U(Ac), U(Sc), Q)

≤ I (X (S); YN |X (Ac), X (Sc), U(Sc), Q)

= Ĩ (S) (62)

and

J (S ∩ A) = H (U((S ∩ A)c), X ((S ∩ A)c)|Q)

−
∑

k∈(S∩A)c

[
H (Uk |Yk, Xk, Q) + H (Xk |Q)

]

= H (U((S ∩ A)c), X ((S ∩ A)c)|Q)

− H (U(Ac), X (Ac)|Q)

−
∑

k∈(S∩A)c

[
H (Uk |Yk, Xk, Q) + H (Xk |Q)

]

+
∑

k∈Ac

[
H (Uk |Xk, Yk , Q) + H (Xk |Q)

] + J (A)

< H (U((S ∩ A)c), X ((S ∩ A)c)|Q)

− H (U(Ac), X (Ac)|Q)

−
∑

k∈(S∩A)c

[
H (Uk |Yk, Xk, Q) + H (Xk |Q)

]

+
∑

k∈Ac

[
H (Uk |Xk, Yk , Q) + H (Xk |Q)

]

= H (U(Sc), X (Sc)|X (Ac), U(Ac), Q)

−
∑

k∈Sc\Ac

[
H (Uk |Yk, Xk, Q) + H (Xk |Q)

]

≤ H (U(Sc), X (Sc)|X (Ac), Q)

−
∑

k∈Sc\Ac

[
H (Uk |Yk, Xk, X (Ac), Q)

+ H (Xk |X (Ac), Q)
]

= H (Ũ(Sc), X̃(Sc)| X̃(Ac), Q̂)

−
∑

k∈Sc

[
H (Ũk |Ỹk, X̃k , X̃(Ac), Q̂)

+ H (X̃k | X̃(Ac), Q̂)
]

= H (Ũ(Sc), X̃(Sc)| Q̃)

−
∑

k∈Sc

[
H (Ũk |Ỹk, X̃k , Q̃) + H (X̃k | Q̃)

]

= J̃(S).

APPENDIX E
REMOVING THE CONSTRAINT (31)

We repeat essentially the same argument as in Appendix D,
so we will be more succinct this time. Define J (S) as in (54)
and N = [1 : N]. Then, the rate region characterized
by (30) and (31) can be rewritten as the rate region that
consists of all rate tuples (Rk : k ∈ D) such that

∑

k∈T
Rk < min

S⊆N :
1∈S,Sc∩D=T

J (S), ∅ �= T ⊆ D, (63)

for some pmf p(x N , uN
2 , q) such that

min
S⊆N :

1∈S,Sc∩D=∅
J (S) ≥ 0. (64)

Following essentially the same steps as those in the proof
of Lemma 1, which is omitted for brevity, we can show that
the entire rate region (63) is attained by the distributions that
satisfy (64).

Lemma 2: Let (X N , U N
2 , Q) ∼ p(x N , uN

2 , q) such that
J (A) < 0 for some A ⊂ N with 1 ∈ A, Ac ∩ D = ∅.
Then, there exists (X̂ N , Ũ N

2 , Q̃) ∼ p(x̃ N , ũN
2 , q̃) such that

J̃(A) ≥ 0,

min
S⊆N :

1∈S,Sc∩D=T

J (S) < min
S⊆N :

1∈S,Sc∩D=T

J̃ (S), ∅ �= T ⊆ D, (65)

min
S⊆N :

1∈S,Sc∩D=∅
J (S) < min

S⊆N :
1∈S,Sc∩D=∅

J̃ (S), (66)

where J̃ (S) is (54) evaluated with (X̃ N , Ỹ N , Ũ N
2 , Q̃) in place

of (X N , Y N , U N
2 , Q), and Ỹ N are the output of the channel

corresponding to the input X̃ N .
From Lemma 2, it follows that for any achievable rate region

attained by a distribution such that there exists some A with
J (A) < 0, there exists another distribution such that J̃ (A) ≥ 0
while strictly increasing the rate constraints (65) and strictly
increasing the constraint on the pmf (66). By repeatedly
applying Lemma 2 until J (S) ≥ 0 for all S ⊆ N such that
1 ∈ S, Sc ∩D = ∅, we have shown that there exists a strictly
larger achievable rate region which satisfies the constraint (64).
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