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Abstract— In index coding, a server broadcasts multiple
messages to their respective receivers, each with some side infor-
mation that can be utilized to reduce the amount of communica-
tion from the server. Distributed index coding is an extension of
index coding in which the messages are broadcast from multiple
servers, each storing different subsets of the messages. In this
paper, the optimal tradeoff among the message rates and the
server broadcast rates, which is defined formally as the capacity
region, is studied for a general distributed index coding problem.
Inner and outer bounds on the capacity region are established
that have matching sum-rates for all 218 non-isomorphic four-
message problems with equal link capacities for all the links
from servers to receivers. The proposed inner bound is built
on a distributed composite coding scheme that outperforms
the existing schemes by incorporating more flexible decoding
configurations and enhanced fractional rate allocations into two-
stage composite coding, a scheme that was originally introduced
for centralized index coding. The proposed outer bound is built
on the polymatroidal axioms of entropy, as well as functional
dependences such as the fd-separation introduced by the multi-
server nature of the problem. This outer bound utilizes general
groupings of servers with different levels of granularity, which
allows a natural tradeoff between computational complexity and
tightness of the bound, and includes and improves upon all exist-
ing outer bounds for distributed index coding. Specific features of
the proposed inner and outer bounds are demonstrated through
concrete examples with four or five messages.

Index Terms— Network coding, source coding, Satellite
broadcasting.

I. INTRODUCTION

INDEX coding has been recognized as one of the canonical
problems in network information theory. In its classic set-

ting, the index coding problem studies the broadcast rate of n
messages from a single centralized server to multiple receivers
with side information. In this paper, we study the distributed
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index coding problem, whereby different subsets of the mes-
sages are stored over multiple servers. Such communication
model has clear applications for practical scenarios, in which
the information is geographically distributed and stored across
many locations.

A. Background

Since its introduction by Birk and Kol [3] in 1998, the cen-
tralized index coding problem has intrigued various research
communities and has been extensively investigated from vari-
ous perspectives such as algebraic coding theory, graph theory,
network coding, Shannon theory, and interference alignment.
See, for example, [4]–[17], and the references therein. How-
ever, the index coding problem remains open in general.

Among all linear and nonlinear coding schemes proposed
in the literature for the centralized index coding problem
[18], we focus on the composite coding scheme from [14]
for the following reasons. Many coding schemes in the
literature have been designed to achieve lower bounds on
the symmetric capacity (upper bounds on the broadcast rate)
only. These schemes include clique covering [3], maximum
distance separable (MDS) codes [3], partial clique covering
[3], minrank-based codes [5], [6] and interference-alignment-
based codes [15], [16]. Fractional local partial clique covering
and recursive coding proposed in [10] generalize some of
the aforementioned schemes and allow characterization of
non-symmetric rates (inner bounds on the capacity region).
However, it is shown in [18] that an enhanced version of
composite coding strictly subsumes the inner bound provided
by both fractional local clique covering and recursive coding.1

Furthermore, composite coding can give tight inner bounds on
the capacity region for all centralized index coding problems
with five or fewer messages [14]. In plain terms, composite
coding is a two-stage nonlinear coding scheme based on
random coding. In the first stage of encoding, each nonempty
subset of messages is mapped via random coding to a cor-
responding random codeword, referred to as composite index.
In the second stage, all composite indices are mapped together
to a final codeword, again via random coding. Decoding takes
place in the reverse order of stages. In the second stage of
decoding, each receiver can choose which messages to decode,
which dictates which composite indices are useful in this
stage of decoding. Each such decoding configuration results
in an achievable rate region for the centralized index coding
problem, which is an inner bound on its capacity region.

1Also note that in general, searching the maximum symmetric rate in the
convex hull of (asymmetric) inner bounds on the capacity region can result in
a higher symmetric rate (compared to searching for the maximum symmetric
rate among individual coding schemes).
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Although composite coding is not practical due to random
coding, it achieves a computable achievable rate region that
can be used as a benchmark when designing linear index
codes. Simplification methods for composite coding were
recently proposed in [19] for eliminating unnecessary compos-
ite indices and excluding unnecessary decoding configurations,
leading to reduced computational complexity.

An outer bound on the capacity region of the centralized
index coding problem was presented in [8], [14], which is
based on the polymatroidal (PM) axioms of the entropy func-
tion.2 The well-known maximum acyclic induced subgraph
(MAIS) lower bound on achievable broadcast rates, proposed
in [5], is implied by the PM outer bound and can be strictly
looser [14].

The distributed index coding problem was first introduced
in [20], which derived lower and upper bounds on the broad-
cast rate in a special case in which each receiver has a distinct
message as side information. Subsequently, the authors in [21]
considered another interesting special case with two servers
and arbitrary message subsets.

Previous work [2] is the first known work to consider the
most general setting for distributed index coding, where there
is a server for every subset of messages. These servers are
connected to their subsets of messages and communicate the
messages to all receivers via individual noiseless broadcast
channels with fixed capacities. The centralized index coding
problem can be seen as a special case of this model, in which
only one server with all messages and a nonzero broadcast
channel capacity is present. The general distributed index
coding problem shows non-trivial behavior compared to the
centralized version, as first reported in [2]. See also Figure 1
and Example 1 in Section II. Paper [2] is also the first work
to apply composite coding to distributed index coding and
present a basic outer bound on its capacity region, which is
based on the PM axioms of the entropy function and includes
distributed MAIS bound as a special case. Papers [1], [22]
both built on [2] and were independently developed. Two
key differences between [22] and [1] are as follows. The
authors in [22] demonstrated the necessity of cooperative
composite coding among distributed servers for achieving
tighter inner bounds (as opposed to independently splitting
composite index rates across servers as used in [2]). This paper
subsequently formed a basis for [23]. Neither [22] nor [23]
develop new performance bounds and use a simplified version
of the distributed MAIS bound in [2] for benchmarking their
coding scheme. On the other hand, [1] utilizes a more flexible
enhanced fractional allocation of server link capacities over
different decoding configurations compared to [2], [22], [23].
In addition, it nontrivially extended and strictly tightened the
outer bound in [2].

B. Contributions

In this paper, we build upon the accumulated knowledge in
general distributed index coding [1], [2], [22], [23] and provide
further contributions as follows.

2The resulting outer bound on the rate region itself is not polymatroidal.
However, since the bound uses all the polymatroidal axioms for the entropy
function, it is referred to as the PM outer bound.

Firstly in Section III, we propose a more general distributed
composite coding scheme that strictly subsumes those in [1],
[2], [22], [23], thus establishing a tighter inner bound on
the capacity region of the distributed index coding problem.
Notably, the proposed coding scheme combines our previously
devised enhanced fractional composite coding [1] and the
cooperative composite coding of [22], [23] and adds a new
dimension of decoding flexibility. In our new scheme, each
receiver can choose a different group of servers for decod-
ing, independent of other receivers. Therefore, the decod-
ing configuration has many more possibilities compared
to [1], [2], [22], [23].

The second main contribution is a more general outer bound
on the capacity region of the distributed index coding problem
that strictly subsumes our previous outer bound in [1]. It still
uses the PM axioms of the entropy function. The novelty,
however, is twofold. First, [1] only considered server groups
based on the touch (intersecting) structure of the servers with
messages. In this paper, we incorporate the most flexible use
of server groups to derive the necessary conditions for the
achievable rates. Second, due to the specific touch structure in
server groups, some functional structures of the problem were
not reflected in the formulation of the outer bound in [1].
In this paper, we incorporate conditional independence rela-
tions among messages, as identified according to fd-separation
[24], [25]. We refer to this general bound as the grouping
polymatroidal (PM) outer bound.

For gentler presentation, in Section III-A, we first describe
the basic form of our distributed composite coding scheme
with fixed decoding configuration and provide the achiev-
able rate region and detailed error analysis (Theorem 1).
We present the resulting inner bound in a series of equiv-
alent or simplified forms that can help better understand
the coding scheme and reduce the complexity of computa-
tion (Proposition 1 and Corollaries 1–2). In Section III-B,
we present our general composite coding scheme (Theorem 2
and Corollary 3). We provide detailed numerical examples
and discussions to showcase the use and novelty of our
results.

In Section IV-B, we first present the general grouping PM
outer bound (Theorem 3). Then in Sections IV-C and IV-D,
we specify a number of construction techniques for group-
ing servers and present the corresponding specialized group-
ing PM outer bounds (Corollaries 4–5 and Proposition 2).
We present the examples for which these simplified server
group constructions can provide tight sum capacity results.
In Section IV-E, we formalize the hierarchy of server group-
ings in terms of tightness and computational complexity of the
outer bound (Corollaries 6–7 and Propositions 3-5).

In Section V, utilizing the inner and outer bounds derived
thus far, we establish the sum-capacity of all 218 four-message
distributed index coding problems with equal link capacities.
Finally, we summarize our insights and present an outlook for
future research directions in Section VI.

For a positive integer n, [n] denotes the set {1, 2, . . . , n}.
For a finite set A, 2A denotes the set of all subsets of A.

In particular, N = 2[n] denotes the set of all subsets of [n].
For a subset A of a ground set, Ac denotes its complement
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with respect to the ground set. For two sets A and B, A \B
denotes A ∩Bc.

II. THE SYSTEM MODEL AND THE FORMAL

DEFINITION OF THE PROBLEM

Consider the distributed index coding problem with n
messages, xi ∈ {0, 1}ti, i ∈ [n]. For brevity, when
we say message i, we mean message xi. Let Xi be the
random variable corresponding to xi. For any K ⊆ [n],
we use the shorthand notation xK and XK to denote
the collection of messages and the collection of mes-
sage random variables, whose index is in K , respectively.
We use the convention x∅ = X∅ = ∅. We assume that
X1, . . . , Xn are uniformly distributed and independent of each
other.

There are 2n − 1 servers, one per each nonempty subset of
the messages. The server indexed by J ∈ N has access to
messages xJ . For brevity, when we say server J , we mean
the server indexed by J . Server J is connected to all receivers
via a noiseless broadcast link of finite capacity CJ ≥ 0. Note
that this model allows for all possible servers that contain any
subset of messages to be present in the system. If CJ = 1 for
J = [n] and is zero otherwise, we recover the centralized
index coding problem. Let yJ be the output of server J ,
which is a function of xJ , and YJ be the random variable
corresponding to yJ . For simplicity of notation, we also
assume that there exists a dummy server indexed by J = ∅,
which does nothing (C∅ = 0 and Y∅ = ∅). For a collection
P ⊆ N of servers, we use the shorthand notation yP (YP ) to
denote the corresponding collection of outputs (output random
variables) from servers in P . In particular, for P = N , YN

denotes the collection of output random variables from all the
servers.

There are n receivers, where receiver i ∈ [n] wishes
to obtain xi and knows xAi as side information for some
Ai ⊆ [n] \ {i}. The set of messages which receiver i does not
know or want is denoted by Bi = [n] \ (Ai ∪ {i}).

The central question of distributed index coding is to find
the maximum amount of information that can be communi-
cated to the receivers and the optimal coding scheme that
achieves this maximum. To answer this question formally,
we define a (t, r) = ((ti, i ∈ [n]), (rJ , J ∈ N)) distributed
index code by

• 2n encoders, one for each server J ∈ N , such that
φJ :

∏
j∈J{0, 1}tj → {0, 1}rJ maps the messages xJ

in server J to an rJ -bit sequence yJ , and
• n decoders, one for each receiver i ∈ [n], such that ψi :∏

J∈N{0, 1}rJ ×
∏

k∈Ai
{0, 1}tk → {0, 1}ti maps the

sequences yN and the side information xAi to x̂i.

We say that a rate–capacity tuple (R,C) = ((Ri, i ∈
[n]), (CJ , J ∈ N)) is achievable if for every � > 0, there exists
a (t, r) code and a common normalization positive integer r
such that the message rates ti

r , i ∈ [n] and broadcast rates rJ

r ,
J ∈ N satisfy

Ri ≤
ti
r
, i ∈ [n], CJ ≥

rJ
r
, J ∈ N, (1)

and the probability of error satisfies

P{(X̂1, . . . , X̂n) 
= (X1, . . . , Xn)} ≤ �. (2)

For a given link capacity tuple C, the capacity region
C = C (C) of this index coding problem is the closure of the
set of all rate tuples R such that (R,C) is achievable. Unlike
the centralized case in which the capacity region is equal to
the zero-error capacity region [26], it is not known whether
these two capacity regions are equal for the distributed index
coding problem.

We will compactly represent a distributed index coding
instance by a sequence (i|j ∈ Ai), i ∈ [n]. For exam-
ple, for A1 = ∅, A2 = {3}, and A3 = {2}, we write
(1|−), (2|3), (3|2). The list of main symbols introduced so
far and to be introduced later in the paper is summarized
in Table I.

Example 1: Figures 1(a) and 1(b) respectively show the
system models for the centralized index coding problem and
the distributed index coding problem with n = 3 messages.
Recall that the server indexed by J ∈ N contains messages
xJ = (xj , j ∈ J). The multi-server nature of the distributed
index coding problem can lead to fundamentally different
properties compared with the centralized index coding prob-
lem. For example, consider the centralized and distributed
index coding problems, both with the same receiver side
information (1|3), (2|3), (3|2). For the centralized problem,
the capacity region remains unchanged if the side information
at receiver 1 is removed [27], i.e., if A1 becomes ∅. However,
in its distributed counterpart, as long as the broadcast channel
capacities from the servers J1 = {1, 2} and J2 = {1, 3}
are positive, removing the side information at receiver 1 does
result in a strictly smaller capacity region [2].

III. COMPOSITE CODING FOR THE DISTRIBUTED

INDEX CODING PROBLEM

A. Composite Coding for a Fixed Decoding Configuration

Let r > 0, ti = �rRi�, i ∈ [n], where ti is the length and
Ri is the rate of message i, respectively. Composite coding
scheme is a two-stage nonlinear coding scheme based on
random coding. In the first stage of encoding, each nonempty
subset of messages K ⊆ [n] is mapped via random coding to
a corresponding random codeword, referred to as composite
index, denoted by wK ∈ {0, 1}sK , with rate SK and length
sK = �rSK�. We set s∅ = S∅ = 0 by convention. In the sec-
ond stage, composite indices K ⊆ J that are available at server
J are mapped together to a codeword yJ ∈ {0, 1}rJ , again via
random coding, where rJ = rCJ�, J ∈ N .

Decoding takes place in the reverse order of stages. For
each receiver i ∈ [n], fix a set Pi ⊆ N called the decoding
server group and a set Di ⊆ [n] \ Ai called the decoding
message set such that i ∈ Di. The tuples P = (Pi, i ∈ [n]) and
D = (Di, i ∈ [n]) are collectively referred to as the decoding
configuration. In this subsection, we provide an achievable
rate region for composite coding for a fixed (P,D). Note
that

⋃
J∈Pi

J is the set of message indices that is collectively
available to servers in Pi. Thus, receiver i can effectively
recover messages whose indices are in Δi = (

⋃
J∈Pi

J)∩Di.
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TABLE I

LIST OF SYMBOLS

For notational brevity, the dependence of Δi on (P,D) is
implicit.

For any P ⊆ N , Γ∗(P ) =
⋃

J∈P {K : K ⊆ J} =
⋃

J∈P 2J

is the subset completion of P . Similarly, for any M ⊆ N ,
Γ∗(M) =

⋃
K∈M{J ∈ N : K ⊆ J} is the superset

completion of M (with respect to N ). One can think of Γ∗(P )
as the set of all composite indices that the servers in P can
collectively access. One can think of Γ∗(M) as the set of
all servers that have access to at least one composite index
in M .

Theorem 1: A rate-capacity tuple (R,C) is achievable for
the distributed index coding problem (i|Ai), i ∈ [n], under a
given decoding configuration (P,D) if Ri = 0 for all i ∈ [n]

such that i /∈ Δi and3

∑
j∈L

Rj <
∑

K⊆Δi∪Ai,
K∈Γ∗(Pi),

K∩L �=∅

SK , ∀L ⊆ Δi, (3)

∑
K∈M

SK <
∑

J∈Γ∗(M)∩Pi

CJ , ∀M ⊆ Γ∗(Pi) \ 2Ai , (4)

for some SK ≥ 0, K ⊆ [n], for all other i ∈ [n] such that
i ∈ Δi.

3As a degenerate case, if i /∈ Δi, then this “poor” choice of Pi will simply
result in Ri = 0. This is reflected in the conditions of Theorems 1 and 2.
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Fig. 1. Centralized and distributed index coding problems with n = 3
messages.

One can use Fourier–Motzkin elimination (FME)
[28, Appendix D] to express the achievable rate–capacity
region in Theorem 1 without the intermediate variables SK ,
K ⊆ [n]. A linear program (LP) can also find a (weighted)
achievable sum-rate of composite coding, which typically
has a lower computational complexity. Before outlining the
coding scheme corresponding to Theorem 1, we showcase its
use via the following example.

Example 2: Consider the distributed index coding prob-
lem (1|−), (2|3), (3|2) with n = 3 messages and non-
negative, but otherwise arbitrary link capacities CJ ≥
0, J ∈ N \ {∅} and C∅ = 0. Note that the set
N = {∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}} is sub-
set complete and hence, Γ∗(N) = N .

We fix P1 = {{1}}, P2 = {{2}, {1, 2}, {2, 3}}, and
P3 = {{3}, {1, 3}, {1, 2, 3}}. We fix D1 = {1}, D2 =
{1, 2}, and D3 = {1, 3}. Hence, D1 ∪ A1 = {1}, and
Di ∪ Ai = {1, 2, 3}, i = 2, 3. Note that Δi = Di,
i ∈ [n]. Note also that Γ∗(P1) = {∅, {1}}, Γ∗(P2) =
{∅, {1}, {2}, {1, 2}, {3}, {2, 3}} and Γ∗(P3) = N . Inequality
(3) (including active and inactive inequalities) gives (5), shown
at the bottom of the next page. Inequality (4) (excluding
inactive inequalities) yields (6), shown at the bottom of
the next page.

We apply FME to eliminate all present SK and find that the
achievable rate-capacity tuple (R,C) satisfies

R1 < min{C{1}, C{1,2}, C{1,3} + C{1,2,3}},
R1 +R2 < C{2} + C{1,2} + C{2,3},

R1 +R3 < C{3} + C{1,3} + C{1,2,3}.

Note that we are not claiming that the choice of (P,D)
is optimal for this toy example. The chosen D is indeed
optimal, but for a more compact exposition, we chose different
and smaller suboptimal sets Pi ⊂ N , instead of the optimal
Pi = N , i ∈ [n].

Proof: [Outline of Coding Scheme for Theorem 1]
Codebook generation. Step 1. For each K ⊆ [n] and each
value of xK , generate a composite index wK(xK) drawn
independently and uniformly at random from [2sK ]. That is,
wK is a random mapping as

wK :
∏
j∈K

[2tj ]→ [2sK ].

For brevity, when we say composite index K , or wK , we mean
composite index wK(xK). Step 2. For each J ∈ N and each
value of composite index tuple (wK ,K ∈ 2J), generate
a codeword yJ ((wK ,K ∈ 2J)) drawn independently and
uniformly at random from [2rJ ]. That is, yJ is a random
mapping as

yJ :
∏

K∈ 2J

[2sK ]→ [2rJ ].

The codebook {(wK(xK),K ⊆ [n]), (yJ((wK ,K ∈
2J)), J ∈ N)} is revealed to all corresponding parties.4,5

Encoding. To communicate messages x[n], each server
J ∈ N computes wK(xK) for each K ∈ 2J and transmits
yJ((wK ,K ∈ 2J)).

Decoding. Step 1. For i ∈ [n] such that i ∈ Δi, receiver i
finds the unique composite index tuple (ŵK ,K ∈ Γ∗(Pi))
such that yJ = yJ((ŵK ,K ∈ 2J)) for every J ∈ Pi. If there
is more than one such tuple, it declares an error. Step 2.
Assuming that (ŵK ,K ∈ Γ∗(Pi)) is correct, receiver i finds
the unique message tuple x̂Δi such that ŵK = wK(x̂K) for
every K ∈ Γ∗(Pi) with K ⊆ Δi ∪ Ai. If there is more than
one such tuple, it declares an error.

The inequalities in (3) signify the second-step decoding
constraints for the messages in Δi to be recovered with
vanishingly small probability of error from all composite
indices K in Γ∗(Pi), with the help of side informationAi. The
inequalities in (4) signify the first-step decoding constraints
for the composite indices that the servers in Pi have access to
(except those that can be generated from side information) to
be recovered with vanishingly small probability of error from
the outputs yJ from the servers J in Pi. The details of error
analysis of Theorem 1 is provided in Appendix A.

To help with understanding of Theorem 1, we also present
the error analysis for a specific example as follows.

4It is worth contrasting single-layer flat coding of messages into random
codewords versus two-layer composite coding of messages into random
composite indices and then composite indices into random codewords. In other
words, composite coding can be viewed as random construction of an approx-
imate MDS code for composite indices, rather than messages themselves. This
adds flexibility in decoding conditions and can enhance the achievable rate
region. Please also see [14], [18].

5One of the servers must act as a representative or a central processing
unit to generate the codebook and reveal the codebook to all corresponding
servers and all users. This is because the random mapping of xK to composite
index wK should be identical among all servers that can generate wK . For
composite index K , the corresponding servers are indexed by the superset of
K with respect to the set of all servers N , Γ∗(K).
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Example 3: Let us revisit Example 2 and consider decod-
ing for receiver 2 with P2 = {{2}, {1, 2}, {2, 3}},
Δ2 = D2 = {1, 2}.

In the first step of decoding, receiver 2 tries to decode
composite indices ŵK ,K ∈ Γ∗(P2) from the received
codewords yJ , J ∈ P2 and its side information xA2 . The
decoding error probability Pe is the probability that there
exists some composite index tuple (ŵK ,K ∈ Γ∗(P2)) =
(ŵ{1}, ŵ{2}, ŵ{1,2}, ŵ{3}, ŵ{2,3}) other than the correct (actu-
ally transmitted) tuple (w{1}, w{2}, w{1,2}, w{3}, w{2,3}) such
that they are mapped to the same codeword yJ for every
J ∈ P2 = {{2}, {1, 2}, {2, 3}}. To utilize the union bound
for upper bounding Pe, we partition the error event according
to the erroneous composite index set M ⊆ Γ∗(P2) \ 2A2 =
{{1}, {2}, {1, 2}, {2, 3}}. That is, ŵK 
= wK iff K ∈ M .
Note that 2A2 is always excluded from M for the reason that
ŵ{3} can be generated by receiver 2 from xA2 = x{3} and
thus will never be erroneous. Therefore, by the union bound,
we have Pe ≤

∑
M⊆{{1},{2},{1,2},{2,3}} P

M
e , where

PM
e

.=
∑

(ŵ{1},ŵ{2},ŵ{1,2},w{3},ŵ{2,3}):
ŵK �=wK ,K∈M,
ŵK=wK ,K /∈M

P

⎧⎪⎪⎨
⎪⎪⎩

⋂
J∈{{2},{1,2},{2,3}},

J∈Γ∗(M)

{
yJ = yJ(ŵK ,K ∈ 2J)

}
⎫⎪⎪⎬
⎪⎪⎭
.

To ensure vanishingly small decoding error probability
Pe, each PM

e has to be vanishingly small. In particu-
lar, we present detailed analysis for PM

e with M =
M4 = {{1}, {1, 2}, {2, 3}} as specified in Example 2,
while other PM

e can be analyzed similarly. Since P2 ∩
Γ∗(M) = {{2}, {1, 2}, {2, 3}}∩ Γ∗({{1}, {1, 2}, {2, 3}}) =
{{1, 2}, {2, 3}}, we have

PM4
e =

∑
(ŵ{1},w{2},ŵ{1,2},w{3},ŵ{2,3}):

ŵK �=wK ,K∈{{1},{1,2},{2,3}}

P

⎧⎨
⎩

⋂
J∈{{1,2},{2,3}}

{
yJ = yJ(ŵK ,K ∈ 2J)

}
⎫⎬
⎭

=
(2s{1} − 1) · (2s{1,2} − 1) · (2s{2,3} − 1)

2r{1,2} · 2r{2,3}
(7)

< 2s{1} · 2s{1,2} · 2s{2,3} · 2−r{1,2} · 2−r{2,3}

< 2rS{1}+1+rS{1,2}+1+rS{2,3}+1−(rC{1,2}−1)−(rC{2,3}−1)

= 25 · 2r(S{1}+S{1,2}+S{2,3}−C{1,2}−C{2,3}), (8)

where (7) holds since there are (2s{1} − 1) ·
(2s{1,2} − 1) · (2s{2,3} − 1) erroneous tuples
(ŵ{1}, w{2}, ŵ{1,2}, w{3}, ŵ{2,3}) where ŵK 
= wK ,K ∈
M4, and for each erroneous composite index tuple, it is
mapped to the same codeword yJ as the correct tuple for
all J ∈ {{1, 2}, {2, 3}} with probability 1/(2r{1,2} · 2r{2,3})
due to the uniform random codebook generation. According
to (8), PM4

e tends to 0 as r→∞, provided that

S{1} + S{1,2} + S{2,3} < C{1,2} + C{2,3}.

Note that the above constraint has appeared in the system of
inequalities given by (4) in Example 2. Other inequalities given
by (4) with i = 2 in Example 2 are required to ensure vanish-
ingly small PM

e for other M ⊆ {{1}, {2}, {1, 2}, {2, 3}}. All
these inequalities are to be satisfied to ensure a vanishingly
small first-step decoding error probability Pe for receiver 2.

The error analysis for the second step of decoding can
be done in a similar way. Assume that all the compos-
ite indices ŵK ,K ∈ Γ∗(P2) have been correctly decoded.
In the second step of decoding, receiver 2 tries to decode
messages x̂Δ2 = x̂{1,2} from the decoded composite indices
ŵK ,K ∈ Γ∗(P2) and its side information xA2 = x{3}.
The decoding error probability Pe is the probability that
there exists some message tuple (x̂1, x̂2, x3) other than the
correct tuple (x1, x2, x3) such that they are mapped to the
same composite index wK for every K ∈ 2Δ2∪A2 ∩
Γ∗(P2) = 2{1,2,3} ∩ {{1}, {2}, {1, 2}, {3}, {2, 3}} =
{{1}, {2}, {1, 2}, {3}, {2, 3}}. We partition this error event
according to the erroneous message set L ⊆ Δ2 = {1, 2}.

R1 < S{1}, i = 1, L = Δ1,
R1 < S{1} + S{1,2}, i = 2, L = {1} ⊂ Δ2,
R2 < S{2} + S{1,2} + S{2,3}, i = 2, L = {2} ⊂ Δ2,
R1 +R2 < S{1} + S{2} + S{1,2} + S{2,3}, i = 2, L = Δ2,
R1 < S{1} + S{1,2} + S{1,3} + S{1,2,3}, i = 3, L = {1} ⊂ Δ3,
R3 < S{3} + S{1,3} + S{2,3} + S{1,2,3}, i = 3, L = {3} ⊂ Δ3,
R1 +R3 < S{1} + S{1,2} + S{3} + S{1,3} + S{2,3} + S{1,2,3}, i = 3, L = Δ3.

(5)

S{1} < C{1}, i = 1,M1 = Γ∗(P1),Γ∗(M1) ∩ P1 = P1,
S{1} + S{1,2} < C{1,2}, i = 2,M2 = {{1}, {1, 2}},Γ∗(M2) ∩ P2 = {{1, 2}},
S{2,3} < C{2,3}, i = 2,M3 = {{2, 3}},Γ∗(M3) ∩ P2 = {{2, 3}},
S{1} + S{1,2} + S{2,3} < C{1,2} + C{2,3}, i = 2,M4 = {{1}, {1, 2}, {2, 3}},
S{1} + S{2} + S{1,2} + S{2,3} < C{2} + C{1,2} + C{2,3}, i = 2,M5 = {{1}, {2}, {1, 2}, {2, 3}},
S{1,2} + S{2,3} + S{1,2,3} < C{1,2,3}, i = 3,M6 = {{1, 2}, {2, 3} {1, 2, 3}},
S{1} + S{1,2} + S{1,3} + S{2,3} + S{1,2,3} < C{1,3} + C{1,2,3}, i = 3,M7 = {{1}, {1, 2}, {1, 3}, {2, 3} {1, 2, 3}},∑

K∈M8
SK < C{3} + C{1,3} + C{1,2,3}, i = 3,M8 = Γ∗(P3) \ {{2}},Γ∗(M8) ∩ P3 = P3.

(6)
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That is, x̂j 
= xj iff j ∈ L. Therefore, by the union bound,
we have Pe ≤

∑
L⊆{1,2} P

L
e , where

PL
e
.=

∑
(x̂1,x̂2):

x̂j �=xj,j∈L,
x̂j=xj,j /∈L

P

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⋂
K∈{{1},{2},

{1,2},{3},{2,3}},
K∩L �=∅

{ŵK = wK(x̂K)}

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
.

To ensure vanishingly small Pe, each PL
e has to be vanishingly

small. In particular, we present detailed analysis for PL
e with

L = Δ2 = {1, 2}, while other PL
e can be analyzed similarly.

We have

PL
e =

∑
(x̂1,x̂2):

x̂1 �=x1,x̂2 �=x2

P

⎧⎪⎪⎨
⎪⎪⎩

⋂
K∈{{1},{2},
{1,2},{2,3}}

{ŵK = wK(x̂K)}

⎫⎪⎪⎬
⎪⎪⎭

=
(2t1 − 1) · (2t2 − 1)

2s{1} · 2s{2} · 2s{1,2} · 2s{2,3}
(9)

< 2t1 · 2t2 · 2−s{1} · 2−s{2} · 2−s{1,2} · 2−s{2,3}

< 2rR1+1+rR2+1−rS{1}−rS{2}−rS{1,2}−rS{2,3}

= 22 · 2r(R1+R2−S{1}−S{2}−S{1,2}−S{2,3}), (10)

where (9) holds since there are (2t1 − 1) · (2t2 − 1) erroneous
message tuples, and for each erroneous tuple, it is mapped
to the same composite index wK as the correct tuple for
all K ∈ {{1}, {2}, {1, 2}, {2, 3}} with probability 1/(2s{1} ·
2s{2} · 2s{1,2} · 2s{2,3}) due to the uniform random codebook
generation. According to (10), PL

e tends to 0 as r → ∞,
provided that

R1 +R2 < S{1} + S{2} + S{1,2} + S{2,3}.

Note that the above constraint appears in the system of
inequalities given by (3) in Example 2. Other inequalities
given by (3) with i = 2 in Example 2 are required to
ensure vanishingly small PL

e for other L ⊆ {1, 2}. All these
inequalities are to be satisfied to have a vanishingly small
second-step decoding error probability Pe for receiver 2.

The rate region in Theorem 1 can be represented equiva-
lently as follows.

Proposition 1: A rate-capacity tuple (R,C) is achievable
for the distributed index coding problem (i|Ai), i ∈ [n], under
a given decoding configuration (P,D) if Ri = 0 for all i ∈ [n]
such that i /∈ Δi. And for i ∈ [n] such that i ∈ Δi, (3) holds
and

∑
K∈Γ∗(Q)\Γ∗(Pi\Q)\2Ai

SK <
∑
J∈Q

CJ , ∀Q ⊆ Pi. (11)

Here, the summand on the LHS of (11) signifies the set of
composite indices that can be accessed only by the servers
in Q (and not by the servers in Pi \ Q), and that are not
generated freely from the side information Ai. A formal proof
of Proposition 1 is provided in Appendix B.

Remark 1: In previous work [1], [2], composite index rates
had been split across servers, where server-specific rates, SK,J ,
K ⊆ J , were limited by the corresponding server capacity,
CJ . However, as demonstrated by [22], [23] such rate splitting

can be suboptimal, and cooperative composite coding (CCC)
can generally achieve tighter inner bounds on the capacity
region of distributed index coding problems, where the same
subset of messages are mapped to the same composite index
at different servers. Subsequently, composite indices wK and
their corresponding rates SK are not server-specific. In the
current work, we have adopted cooperative compression of
composite indices as baseline.

Remark 2: Compared to all previous work [1], [2], [22],
[23], we have introduced user-specific decoding server groups,
Pi ⊆ N , i ∈ [n]. Compared to [22], [23] we use a more
flexible enhanced fractional allocation of link capacities over
decoding configurations (see Section III-B), which was also
reported in earlier work [1]. See Remarks 3 and 5, as well as
Examples 6 and 8 for more details on how these improvements
can lead to generally tighter inner bounds on the capacity
region.

Remark 3: If CJ = 0 for some J ∈ N , we can limit our
attention to the set of active servers J with positive capacity,
denoted by NA = {J ∈ N : CJ > 0}. Our results in
Theorem 1 and Proposition 1 can easily incorporate the set
of active servers NA, which can reduce the computational
complexity of characterizing the rate region. Example 17 in
Appendix C illustrates how the rate region is easily specialized
when active servers NA is a strict subset of N . Example 17
also shows an instance of equivalence of Proposition 1 and
Theorem 1. Note that the results in [22], [23] are presented
based on the set of active servers NA.

We now present a few simplifications of Theorem 1. First,
setting Pi = N , i ∈ [n] yields the following.

Corollary 1: A rate-capacity tuple (R,C) is achievable for
the distributed index coding problem (i|Ai), i ∈ [n], under
given decoding message sets D if

∑
j∈L

Rj <
∑

K⊆Di∪Ai,
K∩L �=∅

SK , ∀L ⊆ Di, i ∈ [n], (12)

and
∑

K∈M

SK <
∑

J∈Γ∗(M)

CJ , ∀M ⊆ N \ 2Ai , i ∈ [n]. (13)

The simplification in Corollary 1 can still result in a tight
sum-rate.

Example 4: Consider the distributed index coding prob-
lem (1|−), (2|4), (3|4), (4|3) with equal unit link capacities
CJ = 1 for all J ∈ N \ {∅}. Choose Pi = N , i ∈ [n]. Choose
D1 = {1} and Di = [n] \ Ai for i = 2, 3, 4. Maximizing
the sum-rate under the constraints (12) and (13) results in
R1 + R2 + R3 + R4 < 21, which is the sum-capacity of
this index coding problem under equal link capacities; see
Example 12 for the matching upper bound.

We now further simplify Corollary 1 by choosing the com-
posite rates explicitly (and potentially suboptimally) as SK =
CK , K ∈ N , which essentially prevents cooperation among
the servers and forces server J to transmit the composite index
wJ by a one-to-one mapping yJ(wJ (xJ )).

Corollary 2: A rate-capacity tuple (R,C) is achievable for
the distributed index coding problem (i|Ai), i ∈ [n], under
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given decoding message sets D if
∑
j∈L

Rj <
∑

J⊆Di∪Ai,
J∩L �=∅

CJ , ∀L ⊆ Di, i ∈ [n]. (14)

With no need for Fourier–Motzkin elimination of the compos-
ite index rates, the rate region in Corollary 2 can be easily
evaluated.

Example 5: Consider the distributed index coding problem
(1|4), (2|4), (3|2), (4|3) with equal unit link capacities CJ = 1
for all J ∈ N \{∅}. Choose Di = [n]\Ai, i ∈ [n]. Corollary 2
then simplifies to the set of inequalities Ri < 8, i ∈ [n],
Ri+Rj < 12, i 
= j ∈ [n], R1+R2+R3 < 14, R1+R2+R4 <
14, and R1 + R3 + R4 < 14. For this problem, Theorem 1
(with no pre-specified restriction on SK) yields the same rate
region under equal link capacities.

B. Enhanced Fractional Composite Coding

The main idea behind enhanced fractional composite coding
is to allow message rates Ri, i ∈ [n], and composite index rates
SK , K ⊆ [n], to be a function of the decoding configuration
(P,D) at the receivers. More formally, let Pi = 2N \ {∅} be
the set of all possible nonempty decoding server groups and
Di = {Di ⊆ [n] \ Ai : i ∈ Di} be the set of all possible
decoding message sets at receiver i. Whenever we refer to a
decoding configuration (P,D), we refer to a decoding server
group tuple P = (Pi, i ∈ [n]) ∈

∏n
i=1 Pi and a decoding

message set tuple D = (Di, i ∈ [n]) ∈
∏n

i=1Di. Recall that
Δi = (

⋃
J∈Pi

J) ∩Di, for each i ∈ [n] and (P,D).
Let r ∈ N. Let for each (P,D) and i ∈ [n], ti(P,D) =
�rRi(P,D)�, where Ri(P,D) is the rate of message i com-
municated via decoding configuration (P,D). Let xi(P,D) ∈
[2ti(P,D)] be the part of message i communicated via decoding
configuration (P,D). Denote sK(P,D) = �rSK(P,D)�,
K ⊆ [n], where SK(P,D) is the rate of composite index K
and configuration (P,D). Denote rJ (P) = rCJ (P)�, where
CJ (P) is the fractional capacity of server J for decoding
server group P. By convention, s∅(P,D) = S∅(P,D) = 0
for each (P,D).

Theorem 2: A rate-capacity tuple (R,C) is achievable for
the distributed index coding problem (i|Ai), i ∈ [n], if

Ri =
∑
P,D

Ri(P,D), i ∈ [n], (15)

CJ =
∑
P

CJ (P), J ∈ N, (16)

for some Ri(P,D), CJ(P), and SK(P,D) ≥ 0 that satisfy
∑
j∈L

Rj(P,D) <
∑

K⊆Δi∪Ai,
K∈Γ∗(Pi),

K∩L �=∅

SK(P,D), ∀L ⊆ Δi, (17)

and

∑
D

∑
K∈M

SK(P,D) <
∑

J∈Γ∗(M)∩Pi

CJ(P),

∀M ⊆ Γ∗(Pi) \ 2Ai , (18)

for i ∈ [n] such that i ∈ Δi and for J ∈ N such that J ∈⋃
i∈[n] Pi. Otherwise, set Ri(P,D) = 0 for i ∈ [n] such that

i /∈ Δi and set CJ (P) = 0 for J ∈ N such that J /∈
⋃

i∈[n] Pi.
We now outline the coding scheme corresponding to the

achievable rate region of Theorem 2. The details of error
analysis is omitted for brevity and follows similar steps as
in the proof of Theorem 1.

Codebook generation: Step 1. For each K ⊆ [n], (P,D),
and each value of xK(P,D), a corresponding composite index
wK,P,D(xK(P,D)) is drawn independently and uniformly at
random from [2sK(P,D)]. That is,

wK,P,D :
∏
j∈K

[2tj(P,D)]→ [2sK(P,D)].

Step 2. For each server J ∈ N , decoding server group
tuple P ∈

∏n
i=1 Pi, and each value of composite index

tuple (wK,P,D, (K,D) ∈ 2J ×
∏n

i=1Di), a fractional server
index yJ,P((wK,P,D, (K,D) ∈ 2J ×

∏n
i=1Di)) is drawn

independently and uniformly at random from [2rJ(P)]. That
is,

yJ,P :
∏

K∈ 2J

∏
D∈
�n

i=1 Di

[2sK(P,D)]→ [2rJ(P)].

For each J ∈ N , the final codeword yJ is the deter-
ministic concatenation of the fractional server index tuples,
(yJ,P,P ∈

∏n
i=1 Pi). The random codebook

{(wK,P,D(xK(P,D)),K ⊆ [n],P ∈
n∏

i=1

Pi,D ∈
n∏

i=1

Di),

(yJ,P((wK,P,D,(K,D) ∈ 2J×
n∏

i=1

Di)),J ∈ N,P∈
n∏

i=1

Pi)}

is revealed to all corresponding parties. See Footnote 5.
Encoding: To communicate messages x[n], each server

J ∈ N computes wK,P,D(xK(P,D)) for each K ∈ 2J

and (P,D), as well as yJ,P((wK,P,D, (K,D) ∈ 2J ×∏n
i=1Di)) for each P and then transmits the codeword

yJ = (yJ,P,P ∈
∏n

i=1 Pi).
Decoding: Step 1. For each i ∈ [n] and each P, receiver i

finds the unique tuple (ŵK,P,D, (K,D) ∈ Γ∗(Pi)×
∏n

i=1Di)
such that yJ,P = yJ,P((ŵK,P,D, (K,D) ∈ 2J×

∏n
i=1Di)) for

every J ∈ Pi. If there is more than one such tuple, it declares
an error. Step 2. Assuming Step 1 is correctly executed and for
each i ∈ [n] and each (P,D) such that i ∈ Δi, receiver i finds
the unique message tuple x̂Δi(P,D) such that ŵK,P,D =
wK,P,D(x̂K(P,D)) for every K ∈ Γ∗(Pi) with K ⊆ Δi∪Ai.
If there is more than one such tuple, it declares an error.

A few remarks are in order.
Remark 4: Computing the rate region in Theorem 2 over all

decoding configurations (P,D) is quite expensive, but a few
simplifications are possible. First, as mentioned earlier, if i /∈
Δi = Di∩ (

⋃
J∈Pi

J), then the corresponding Ri(P,D) = 0.
Also if J /∈ ∪i∈[n]Pi, then CJ (P) = 0. Second, as mentioned
in Remark 3, we can focus on active servers and consider Pi ⊆
NA = {J ∈ N : CJ > 0}. Third, it suffices to consider subset
complete decoding server groups, such that Pi = Γ∗(Pi). This
is because, all subsets of indices that can be generated by the
servers in Pi (except those that are already known) appear
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in the LHS of (18). That is, composite indices K in M ⊆
Γ∗(Pi) \ 2Ai appear on the LHS of (18). However, in the
RHS of (18), the contributing server capacities are “cut" by
Pi. Therefore, the region becomes no smaller if we use subset
completion of Pi, Γ∗(Pi), instead of Pi.

Remark 5: A less general version of the fractional coding
over different decoding configurations was proposed in the
cooperative composite coding (CCC) scheme [23]. In our
notation, CCC uses the same decoding server group Pi = P ⊆
N for all the receivers and for a fixed decoding message set
tuple D, the corresponding achievable rate region RCCC(D)
can be written as

Ri =
∑
P

Ri(P ), i ∈ [n], (19)

CJ =
∑
P

CJ(P ), J ∈ N, (20)

for some Ri(P ), SK(P ), and CJ (P ) such that
∑
j∈L

Rj(P ) <
∑

K⊆Δi∪Ai,
K∈Γ∗(P ),
K∩L �=∅

SK(P ), ∀L ⊆ Δi, (21)

∑
K∈M

SK(P ) <
∑

J∈Γ∗(M)∩P

CJ(P ), ∀M ⊆ Γ∗(P ) \ 2Ai ,

(22)

for i ∈ [n] such that i ∈ Δi and for J ∈ N such that J ∈ P .
Otherwise, set Ri(P ) = 0 for i ∈ [n] such that i /∈ Δi and
set CJ (P ) = 0 for J ∈ N such that J /∈ P . Here Δi =
(
⋃

J∈P J) ∩Di, for each i ∈ [n] and (P,D). By taking time
sharing over different RCCC(D) regions, the convex hull of⋃

D RCCC(D) is then achievable. The fractional composite
coding scheme in Theorem 2 is more general in two aspects.
First, as mentioned above, our coding scheme allows more
degrees of freedom in choosing the decoding server groups
Pi ⊆ N that are receiver-dependent.6 Second, more subtly, our
coding scheme requires the fractional link capacity constraints
to be satisfied on average over D (cf. (18)), whereas CCC
in [23] requires the link capacity constraints to be satisfied
for each D (cf. (22)). As illustrated by Examples 6 and 8,
respectively, flexibility in choosing different decoding server
groups or averaging fractional link capacities over different
decoding configurations can strictly increase the achievable
rates.

Example 6: Consider the distributed index coding problem
(1|2, 5), (2|3, 4), (3|−), (4|2, 5), (5|1, 2, 4) with CJ = 1 for
J = J1 = {1, 2, 3} and J = J2 = {1, 4}, CJ = 2 for
J = J3 = {1, 3, 4, 5}, and CJ = 0 otherwise. Hence, the set of
active servers is NA = {J1, J2, J3}. We use a single decoding
message set tuple D with D2 = {2}, D3 = {3}, and Di =
[n]\Ai for i = 1, 4, 5. The sum-rate achievable by CCC, which
is computed using (19)-(22) in Remark 5 across all 7 decoding
server group tuples P, Pi = P ⊆ NA, i ∈ [n], satisfies
R1 + R2 + R3 + R4 + R5 < 6. The sum-rate achievable by
Theorem 2, which is computed with variable Pi as a function
of i ∈ [n] using the following 7 randomly found decoding

6This is also an improvement over our preliminary work [1].

server group tuples, satisfies R1 + R2 + R3 + R4 + R5 < 7.
Therefore, there can be a benefit in allowing Pi to vary
across i.

In P1, we set P1 = {J1, J2}, P2 = {J3}, P3 = {J2},
P4 = {J2, J3}, and P5 = NA.

In P2, we set P1 = P2 = P4 = {J1, J2}, P3 = {J2}, and
P5 = {J2, J3}.

In P3, we set P1 = {J2, J3}, P2 = P5 = {J3}, P3 =
{J1, J2}, and P4 = {J2}.

In P4, we set P1 = {J1, J3}, P2 = {J1, J2}, P3 = {J2},
P4 = {J3}, and P5 = {J1}.

In P5, we set P1 = {J2, J3}, P2 = NA, P3 = {J2},
P4 = {J1, J3}, and P5 = {J2}.

In P6, we set P1 = {J2}, P2 = {J1, J2}, P3 = {J2, J3},
P4 = {J1, J3}, and P5 = NA.

In P7, we set P1 = {J1, J3}, P2 = {J2}, P3 = P4 =
{J1, J3}, and P5 = NA.

We note that even with slight variations in the above
7 decoding server group tuples, one can still obtain R1 +
R2 + R3 + R4 + R5 < 7. For example, if we keep P2 to
P7 unchanged and in P1 we set P1 = {J3}, P2 = NA,
P3 = {J1}, P4 = {J2, J3}, and P5 = {J1, J2}, we still obtain
the same sum-rate. Applying Corollary 4 (see Section IV for
details) with the touch grouping Pt = {T{2,5}∩NA, T{1,3,4}∩
NA} will also give a matching outer bound on the sum-
capacity, thus establishing the sum-capacity to be 7.

Example 7: In Example 6, we can compute the whole
capacity region using FME. In our programs, there were
181 variables to eliminate, which was completed in a few
minutes on an Apple iMac 4GHz Intel Core i7 with 16 GB
memory and using Matlab® R2017b and the FME soft-
ware [29]. The achievable rate region is

R2 < 1, R4 < 3, R5 < 2,
R1 +R2 +R3 < 4, R1 +R3 +R4 < 4,
R2 +R3 +R4 < 4, R2 +R3 +R5 < 3.

Comparison of this region with that obtained using Corollary 6
(see Section IV for details) shows the region is tight, thus
establishing the capacity region for this problem.

Example 8: Consider the distributed index coding prob-
lem (1|4), (2|1, 3, 4), (3|1, 2, 4), (4|1, 3), (5|3) with CJ = 1
for J = {1, 2, 5}, {1, 2, 3, 5}, and {2, 4, 5}, and CJ = 0
otherwise. The sum-rate achievable by CCC in Remark 5,
after taking the convex hull over all possible decoding servers
P ⊆ NA = {{1, 2, 5}, {1, 2, 3, 5}, {2, 4, 5}} (7 possibilities)
and D ∈

∏n
i=1Di (1024 possibilities according to Di ⊆

[n] \ Ai, i ∈ Di) satisfies R1 + R2 + R3 + R4 + R5 < 4.
In contrast, if we set Ri(P,D), CJ (P,D), and SK(P,D),
to zero in Theorem 2 except one decoding server group tuple
P with Pi = NA, i ∈ [n] and two decoding message set
tuples D with D1 = {1}, D5 = {5}, and Di = [n] \ Ai

for i = 2, 3, 4, and D′ with D1 = {1, 2}, D5 = {5}, and
Di = [n] \ Ai for i = 2, 3, 4, then the sum-rate satisfies
R1 + R2 + R3 + R4 + R5 < 5, which is strictly larger than
that of CCC. Applying Corollary 4 (see Section IV for details)
with the touch grouping Pt = {T{1,3} ∩ NA, T{2,4,5} ∩ NA}
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will also give a matching outer bound on the sum-capacity,
thus establishing the sum-capacity to be 5.

Just like Theorem 1, Proposition 1 and Corollaries 1 and 2
can be extended by fractional allocation of rates over decoding
configurations. In the following, we present the extension
of Corollary 2 as an illustration. Fix a single decoding
server group tuple P with Pi = N for all i ∈ [n]. Let
SK(P,D) = SK(D) = CK(D), K ∈ N , where CK(D) is
to be determined. This essentially prevents cooperation among
the servers and turns the coding scheme to

wJ,D :
∏
j∈J

[2tj(D)]→ [2CJ (D)], J ∈ N,

where the final codeword yJ is the deterministic concatenation
of composite index tuples, (wJ,D,D ∈

∏n
i=1Di).

Corollary 3: A rate-capacity tuple (R,C) is achievable for
the distributed index coding problem (i|Ai), i ∈ [n], if

Ri =
∑
D

Ri(D), i ∈ [n], (23)

CJ =
∑
D

CJ (D), J ∈ N, (24)

for some Rj(D) and CJ (D) such that
∑
j∈L

Rj(D) <
∑

J⊆Di∪Ai,
J∩L �=∅

CJ(D), ∀L ⊆ Di, i ∈ [n], (25)

for every D ∈
∏n

i=1Di.

IV. OUTER BOUNDS ON THE CAPACITY REGION

A. Preliminaries

We start by introducing two definitions that will play crucial
roles in the general outer bound and its special cases to be
developed henceforth.

Definition 1 (Touch structure): For any set of messages
K ⊆ [n], we say that server J touches K if J ∩ K 
= ∅
and that J does not touch K if J ∩K = ∅. We denote by TK

the collection of servers that touch K and denote by TK the
collection of servers that do not touch K , that is,

TK = {J ∈ N : J ∩K 
= ∅},
TK = {J ∈ N : J ∩K = ∅}

= {J ∈ N : J ⊆ [n] \K} = N \ TK .

And furthermore, for two sets of messages K and L,

TK,L = TL,K = {J ∈ N : J ∩K 
= ∅, J ∩ L 
= ∅},
TK,L = TL,K = {J ∈ N : J ∩K 
= ∅, J ∩ L = ∅}.

Example 9: If n = 4, then

T{1} = {{1}, {1, 2}, {1, 3}, {1, 4}, {1, 2, 3}, {1, 2, 4},
{1, 3, 4}, {1, 2, 3, 4}},

T{1},{2} = {{1}, {1, 3}, {1, 4}, {1, 3, 4}}.

Remark 6: Any set TK can be broken into two disjoint
subsets TK,L and TK,L. Thus, TK,L ⊆ TK , TK,L ⊆ TK in
general and TK,L = TK if K ⊆ L. It is also easy to verify that

TK∪TL = TK∪L and TK∩L ⊆ TK,L = TK∩TL. Definition 1
can be naturally extended to three or more message sets.

In our usual notation, YTK thus denotes the output random
variables from servers that have at least one message from the
message set K , e.g., YT[n] = YN . When the context is clear,
we shall use the shorthand notation TK for YTK , e.g., H(TK)
means H(YTK ).

Definition 2 (Valid server grouping): A server grouping
P = {P1, P2, · · · , Pm}, consisting of m server groups Pi ⊆
N , i ∈ [m], is said to be valid if

⋃
i∈[m] Pi = N . Given a

server grouping P , we denote by PG =
⋃

i∈G Pi the collection
of servers in the server groups identified by G ⊆ [m].
By convention, P∅ = ∅.

Note that the significance and use of server groups Pi in this
section is completely different than that in composite coding
in Section III. Also note that we allow overlaps between
different server groups in a grouping. This is why P is called
a server grouping rather than a server partition that consists of
disjoint server groups. Also note that P[m] =

⋃
i∈[m] Pi = N .

As usual, YPG denotes the output random variables from the
server collection PG, e.g., YP[m] = YN . When the context is
clear, we shall use the shorthand notation PG for YPG , e.g.,
H(PG|XKc) means H(YPG |XKc).

Whenever convenient, we do not include the inactive
dummy server, J = ∅, with C∅ = 0 in the server groupings.

B. The Grouping Polymatroidal Outer Bound

Before establishing the outer bound on the capacity region,
we review the standing assumptions and conditions of achiev-
able rate–capacity tuples (R,C) and (t, r) distributed index
codes that will be used in the derivations. Since the messages
are assumed to be independent and uniformly distributed, for
any two disjoint sets K,K ′ ⊆ [n] we have

H(XK |XK′) = H(XK) =
∑
i∈K

ti. (26)

The encoding condition at server J ∈ N is

H(YJ |XJ) = 0. (27)

The decoding condition at receiver i stipulates

H(Xi|YN ,XAi) ≤ ti · δ(�) (28)

with limε→0 δ(�) = 0 by Fano’s inequality.
We are ready to state the main result of this section, namely,

the grouping polymatroidal (PM) outer bound.
Theorem 3: If a rate–capacity tuple (R,C) is achievable

for the distributed index coding problem (i|Ai), i ∈ [n], then
for any valid server grouping P = {P1, P2, · · · , Pm},

Ri ≤ f([m], Bi ∪ {i})− f([m], Bi), i ∈ [n], (29)

for some f(G,K), for all G,G′ ⊆ [m], K,K ′ ⊆ [n], such
that

f(G,K) = f(G′,K),
if (PG ∪ PG′) \ (PG ∩ PG′) ⊆ TK , (30)

f(∅,K) = f(G, ∅) = 0, (31)
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f(G,K) ≤
∑

J:J∈PG,J∈TK

CJ , (32)

f(G,K) ≤ f(G′,K ′), if K ⊆ K ′, G ⊆ G′, (33)

f(G ∪G′,K ∩K ′) + f(G ∩G′,K ∪K ′)
≤ f(G,K) + f(G′,K ′), (34)

f([m], Bi ∪ {i})− f([m], Bi) = f([m], {i}), i ∈ [n], (35)

f(G,K) + f(G,K ′) = f(G,K ∪K ′),
if K ∩K ′ = ∅, PG ⊆ (N \ TK,K′). (36)

Proof: If rate–capacity tuple (R,C) is achievable, then
for every � > 0 there exists a (t, r) distributed index code
satisfying (1). For any i ∈ [n], we have

ti = H(Xi|XAi) (37)

≤ H(Xi|XAi)−H(Xi|YN ,XAi) + ti · δ(�) (38)

= I(Xi;YN |XAi) + ti · δ(�) (39)

= H(YN |XAi)−H(YN |XAi∪{i}) + ti · δ(�), (40)

where (37) follows from the fact that the messages are
independent and uniformly distributed as specified in (26), and
(38) is due to the decoding condition in (28). Now, given the
server grouping P = {P1, P2, · · · , Pm}, define

fε(G,K) .=
1
r
H(PG|XKc) =

1
r
H(Y{J:J∈

�
i∈G Pi}|XKc),

(41)

for G ⊆ [m] and K ⊆ [n].7 Then,

Ri ≤
ti
r
≤
H(YN |XAi)−H(YN |XAi∪{i})

r · (1− δ(�))

=
fε([m], Bi ∪ {i})− fε([m], Bi)

1− δ(�) , (42)

where the second inequality follows from (40) and the equality
from the definition of fε(G,K).

We now show that the set function fε(G,K) is bounded
from above for any G ⊆ [m], K ⊆ [n] and any � > 0. We
have

fε(G,K) =
1
r
H(PG|XKc)

≤ 1
r
H(PG)

≤
∑

J∈PG

1
r
H(YJ) ≤

∑
J∈PG

rJ
r
≤

∑
J∈PG

CJ . (43)

Also, fε(G,K) is bounded from below as fε(G,K) ≥ 0 due
to the nonnegativity of the entropy function.

Given the boundedness of fε(G,K), its limit infimum

f(G,K) .= lim inf
ε→0

fε(G,K) (44)

is real and bounded. Now taking the limit infimum as �
approaches zero on both sides of (42) yields

Ri ≤ lim inf
ε→0

fε([m], Bi ∪ {i})− fε([m], Bi)
1− δ(�) (45)

= lim inf
ε→0

(fε([m], Bi ∪ {i})− fε([m], Bi)) (46)

7Recall that the (t, r) distributed index code depends on ε and thus so does
the set function fε(G, K).

= lim inf
ε→0

fε([m], Bi ∪ {i})− lim sup
ε→0

fε([m], Bi) (47)

≤ lim inf
ε→0

fε([m], Bi ∪ {i})− lim inf
ε→0

fε([m], Bi) (48)

= f([m], Bi ∪ {i})− f([m], Bi). (49)

We have thus far established (29). It is also checked in
Appendix D that f(G,K) satisfies the conditions in (30)–(36),
which establishes Theorem 3.

Remark 7: The conditions (30)–(36) in Theorem 3 will be
referred to as the Axioms satisfied by the function f(G,K).
Axioms (31), (33), and (34) capture standard polymatroidal
properties of the entropy function. Axioms (30) and (32)
capture the encoding conditions at servers, as well as the
link capacity constraints. Axiom (36) captures the conditional
message independence given by the fd-separation. Refer to
Appendix E for a brief treatment on how fd-separation applies
to the distributed index coding problem. The inequality (29)
will be referred to as the rate constraint inequality jointly
satisfied by R and f(G,K), which is based on the message
independence, as well as the decoding conditions at receivers.

Remark 8: Axiom (35) captures the additional decoding
conditions at the receivers, which also applies to the central-
ized index coding problem [30]. See Appendix D for more
details. It was found in [30] that this axiom is strictly needed
to obtain tight outer bounds on the capacity region for the
secure centralized index coding problem. Currently, we are not
aware of any instance of non-secure centralized or distributed
index coding problem for which Axiom (35) can tighten the
outer bound. However, we include this axiom for the following
reason. Through including the additional decoding conditions
in the centralized index coding problem, it was shown in [30]
that the PM outer bound is as tight as the apparently stronger
bound in which all Shannon-type inequalities are used. See
Remark 12 where we discuss a similar relation between the
most refined PM outer bound for the distributed index coding
problem and the one obtained based on all Shannon-type
inequalities of the entropy function.

The tightness and computational complexity of the grouping
PM outer bound in Theorem 3 depends pivotally on the spe-
cific server grouping P . For a fixed problem size n, the number
of variables in the theorem is exponential in m, the size of P .
To fully compute (R,C) satisfying (29)–(36) for a given P ,
one should use FME to remove all the 2m+n intermediate
variables f(G,K), G ⊆ [m], K ⊆ [n]. In general, this
operation is prohibitively complex even for small m and n.
For a given C, however, it is typically tractable to establish an
upper bound on the (weighted) sum-capacity using LP subject
to (29)–(36). In the next few subsections, we specialize the
outer bound using a number of explicit constructions for server
grouping. In general, the optimal tightness-complexity tradeoff
in choosing a server grouping remains open.

Unless otherwise stated, we denote the outer bound given
by the grouping PM outer bound in Theorem 3 with a specific
server grouping P as RP . For brevity, whenever we say that
one server grouping P is tighter (looser) than another grouping
P ′, we mean that the outer bound RP is tighter (looser) than
the outer bound RP′ .
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C. Outer Bounds Based on Server Groupings Utilizing the
Touch Structure

In this section, we explicitly construct server groupings
based on the touch structure of Definition 1. Let us motivate
the construction through a series of examples and definitions.
Together, they will lead to a closed-form upper bound on the
total sum-capacity, which is implied by Theorem 3 with server
groupings based on a specific touch structure.

Example 10: Consider the problem (1|−), (2|4), (3|4),
(4|3) discussed in Example 4 in Section III. Consider two
sets L = {4, 2} and K = {1, 3}, where set L is ordered as
L = {i1 = 4, i2 = 2}. For this problem, we can verify that

Ai1 = A4 = {3} ⊂ K = {1, 3},
Ai2 = A2 = {4} ⊂ K ∪ {i1} = {1, 3, 4}.

We say that L is an augmentation set of K . Similarly,
L = {2, 3} is an augmentation set of K = {1, 4}. When
K = ∅, we find a unique maximal augmentation set, called
the peripheral. The set U = {1} is the peripheral for this
problem as A1 = ∅ ⊆ ∅, and Ai 
⊆ {1}, i ∈ {2, 3, 4}.

Generally, the idea is to find two disjoint subsets L,K ⊆
[n], such that any valid index code augments the singular
message decoding condition (28) to H(XL|YN ,XK) ≤∑

i∈L ti·δ(�). For the peripheral set U , the peripheral decoding
condition gives H(XU |YN ) ≤

∑
i∈U ti · δ(�). We formalize

this through the following definitions.
Definition 3 (Augmentation set): For the distributed index

coding problem (i|Ai), i ∈ [n] and any two disjoint sets
L,K ⊆ [n], we say L is an augmentation set of K if there
exists an ordering i1, i2, · · · , i|L| of the elements in L such
that Aij ⊆ {i1, · · · , ij−1} ∪K, j ∈ [|L|]. The empty set ∅ is
an augmentation set of any set K ⊆ [n].

Definition 4 (Peripheral): For the distributed index coding
problem (i|Ai), i ∈ [n], we say that set U ⊆ [n] is a peripheral
if U is an augmentation set of the empty set ∅, and that for
any i ∈ U c, we have Ai 
⊆ U .

For a given problem (i|Ai), i ∈ [n], peripheral U is unique.
This can be verified by contradiction as follows. Assume that
there exist two different peripherals U,U ′, and U \ U ′ 
= ∅.
Define u

.= |U |, U1
.= U \ U ′ and U0

.= U ∩ U ′. Then,
U = U0∪U1 and U1∩U0 = ∅. By Definition 4, there exists an
ordering i1, i2, · · · , iu of the elements in U such that Aij ⊆
{i1, · · · , ij−1}, j ∈ [u]. There always exists some s ∈ [u]
such that is ∈ U1 and {i1, · · · , is−1} ⊆ U0. Hence, we have
Ais ⊆ {i1, · · · , is−1} ⊆ U0 ⊆ U ′. We also have is ∈ U ′c

since is ∈ U1 and U1 ∩ U ′ = ∅. Combining that Ais ⊆ U ′

and that is ∈ U ′c leads to a contradiction against Definition 4,
and thus completes the proof.

Remark 9: In [19], [31], a decoding chain is established
based on the idea that receiver j can mimic another receiver
i and decode message i at no cost to the achievable rates if
receiver j knows everything receiver i does. This is similar
to the notion of augmentation set in Definition 3. A chain-
ing procedure, starting from a receiver with an empty side
information set, is used in [32] to prove a lower bound on the
broadcast rate of index coding. This is similar to the procedure
of building the peripheral in Definition 4.

Based on Definitions 3 and 4, we define the augmentation
group as follows.

Definition 5 (Augmentation group): For the distributed
index coding problem (i|Ai), i ∈ [n] with peripheral U ,
we use V = (V1, V2, · · · , Vk), referred to as an augmentation
group, to denote the tuple of k disjoint nonempty sets
V1, · · · , Vk ⊆ U c for some k ≥ 1 such that the following
conditions are satisfied:

1) for any j ∈ [k], Vj is an augmentation set of its
complement set V c

j ;
2) set W

.= [n] \U \ (
⋃

j∈[k] Vj) is an augmentation set of
its complement set W c;

3) there does not exist another tuple of disjoint nonempty
sets V′ = (V ′

1 , V
′
2 , · · · , V ′

k′ ) such that it satisfies the first
two conditions, and that

⋃
j′∈[k′] V

′
j′ ⊂

⋃
j∈[k] Vj .

4) there does not exist another tuple of disjoint nonempty
sets V′ = (V ′

1 , V
′
2 , · · · , V ′

k′) such that it satisfies the
first two conditions,

⋃
j′∈[k′] V

′
j′ =

⋃
j∈[k] Vj , and that

k′ < k.

Note that there can be multiple augmentation groups for a
given problem (i|Ai), i ∈ [n].

Example 11: Consider the problem
(1|−), (2|4), (3|4), (4|3) discussed in Examples 4 and 10.
We have U = {1} and there are in total 2 augmentation groups
V = ({3}) and V′ = ({4}). Note that V′′ = ({3}, {4})
does satisfy the first two conditions of Definition 5,
yet given the existence of V and V′, according to the
third condition, V′′ is not a valid augmentation group.
For another example, consider the six-message problem
(1|4), (2|3), (3|2), (4|1), (5|−), (6|5). We have U = {5, 6}
and in total 4 augmentation groups shown as follows,

V1 = ({1, 2}), V2 = ({1, 3}),
V3 = ({2, 4}), V4 = ({3, 4}).

Note that V′ = ({1}, {2}) does satisfy the first two conditions
of Definition 5, yet given the existence of V1, according to
the fourth condition, V′ is not a valid augmentation group.

A closed-form upper bound on the sum-capacity is given
by the following proposition. Note that set [k + 1 : k] simply
means the empty set ∅.

Proposition 2: For the distributed index coding problem
(i|Ai), i ∈ [n] with peripheral U and an augmentation group
V = (V1, V2, · · · , Vk), we have

∑
i∈[n]

Ri ≤
∑
J∈N

CJ +
∑
�∈[k]

∑
J∈T�

CJ , (50)

where T�
.= TV�,(

�
j∈[�+1:k] Vj)∪W and W = [n] \ U \

(
⋃

j∈[k] Vj).
We prove the proposition by showing that (50) is implied by

Theorem 3 with a specific server grouping PV defined below.
The proof details are given in Appendix F.

Definition 6 (PV grouping): For the distributed index cod-
ing problem (i|Ai), i ∈ [n] with an augmentation group
V = (V1, V2, · · · , Vk), the server grouping PV is defined as
follows

PV = {TV1 , TV2 , · · · , TVk
, T(
�

j∈[k] Vj)c}. (51)
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In some cases, Proposition 2 gives a tight sum-rate result,
as illustrated below.

Example 12: Recall the four-message problem
(1|−), (2|4), (3|4), (4|3) discussed in Examples 4, 10
and 11. The outer bound presented earlier in [2] yields that
R1 +R2 +R3 +R4 ≤ 22. In comparison, given the peripheral
U = {1} and the augmentation group V = {{3}}, we have
W = [n] \ {1} \ {3} = {2, 4}, and hence Proposition 2
tightens the sum-capacity upper bound to

R1 +R2 +R3 +R4 ≤
∑
J∈N

CJ +
∑

J∈T{3},{2,4}

CJ

= 15 + 6 = 21, (52)

which matches the lower bound presented in Example 4.
Note that with another augmentation group V′ = {{4}},
Proposition 2 yields the same tight upper bound of 21 on the
sum-rate.

As one can see, PV is a server grouping whose server
groups are in the form of touch structure. To generalize this
further, we introduce the touch grouping and its resulting outer
bound as follows.

Definition 7 (Touch grouping): For a given m ≤ n and dis-
joint nonempty sets Li ⊆ [n], i ∈ [m], such that

⋃
i∈[m] Li =

[n], the touch grouping Pt is defined as

Pt = {TL1 , TL2, · · · , TLm}. (53)

For the special case m = n, Li = {i}, and Pi = T{i},
the touch grouping is called the individual touch grouping and
is denoted by

P∗
t = {T{1}, T{2}, . . . , T{n}}. (54)

Note that we have PG =
⋃

i∈G TLi = TLG , where LG
.=⋃

i∈G Li. With the touch grouping Pt, the grouping PM outer
bound in Theorem 3 simplifies to the following outer bound,
simply denoted as Rt and referred to as the touch grouping
outer bound.

Corollary 4: The capacity region of the distributed index
coding problem (i|Ai), i ∈ [n], with link capacity tuple C
satisfies C (C) ⊆ Rt, where Pt = {TL1, TL2 , · · · , TLm} is a
valid touch grouping and Rt consists of all rate tuples R such
that

Ri ≤ f([m], Bi ∪ {i})− f([m], Bi), i ∈ [n], (55)

for some f(G,K) for all G,G′ ⊆ [m],K,K ′ ⊆ [n] satisfying

f(G,K) = f(G′,K), if K ⊆ (LG ∩ LG′), (56)

f(∅,K) = f(G, ∅) = 0, (57)

f(G,K) ≤
∑

J:J∈TLG,K

CJ , (58)

f(G,K) ≤ f(G′,K ′), if K ⊆ K ′, G ⊆ G′, (59)

f(G ∪G′,K ∩K ′) + f(G ∩G′,K ∪K ′)
≤ f(G,K) + f(G′,K ′), (60)

f([m], Bi ∪ {i})− f([m], Bi) = f([m], {i}), i ∈ [n]. (61)

Proof: It is obvious that Axioms (31), (33), (34), and (35)
in Theorem 3 and Axioms (57), (59), (60), and (61) above

do not depend on the underlying server grouping, and thus
remain unchanged. Since PG =

⋃
j∈G TLj = TLG , Axioms

(32) and (58) are the same.
Note that [n] ∈ TL for any nonempty L ⊆ [n], which

indicates that the server J = [n] containing all messages is
common among all server groups in the touch grouping Pt.
Hence, with Pt, there never exists two disjoint nonempty sets
K,K ′ ⊆ [n] such that TLG ⊆ (N \ TK,K′) for any nonempty
G ⊆ [m]. This implies that Axiom (36) in Theorem 3, namely,
the fd-separation axiom, can only give trivial inequalities (e.g.,
f(∅,K)+f(∅,K ′) = f(∅,K∪K ′)), and hence, in Corollary 4,
there is no axiom corresponding to the fd-separation axiom.

It remains to prove that Axiom (30) in Theorem 3 simplifies
to Axiom (56), which is shown in Appendix G.

Within the general class of touch grouping, it is unclear
which touch grouping can give the tightest capacity outer
bound with the lowest possible computational cost. Since PV

grouping has an explicit construction, our proposed approach
is to first try this grouping and compare the obtained perfor-
mance bound with an achievable coding scheme. If the results
match, no further action is required. Otherwise, the finest touch
grouping P∗

t = {T{1}, T{2}, . . . , T{n}} can be tried, which
results in the tightest outer bound on the capacity region
among all possible touch groupings. See Section IV-E for
the hierarchy of server groupings in terms of their tightness.
Note that the outer bound in [1] is also established based on
the individual touch grouping and is identical to the touch
grouping outer bound, Corollary 4, but without Axiom (61).

Remark 10: The grouping PM outer bound of Theorem 3
can easily incorporate the set of active servers NA = {J ∈
N : CJ > 0}. One can simply replace N with NA and
P = {P1, · · · , Pm} with PA = {P1 ∩ NA, · · · , Pm ∩ NA}.
However, notice that the axioms of Corollary 4 (and those of
Corollary 7 to be introduced in Section IV-E) are expressed in
simplified forms based on the assumption that all the servers
J ∈ N are active. When NA ⊂ N , using these simplified
axioms might result in looser outer bounds. One can avoid
this issue by using the axioms in their original unsimplified
forms of Theorem 3 with the desired server grouping.

D. Outer Bounds Based on Server Groupings
Utilizing fd-Separation

As discussed in the proof of Corollary 4, one limitation of
the touch grouping outer bound is the missing fd-separation
axiom. To show the usefulness of the fd-separation axiom,
we present a list of problems with discussion, leading to
a construction of server grouping based on fd-separation.
Consider the directed side information graph G = (V , E) of
the index coding problem [18] with n vertices, where vertex
vi represents message i. There exists a directed edge from
vertex vi to vertex vj if and only if i ∈ Aj . A set of vertices
{vi1 , vi2 , · · · , vik

} ⊆ V form a cycle if there is a directed edge
from vertex vij to vij+1 for any j ∈ [k − 1], and there is a
directed edge from vik

to vi1 .
Definition 8 (Isolated vertex and disjoint cycles): For the

distributed index coding problem (i|Ai), i ∈ [n] with side
information graph G = (V , E), a vertex v ∈ V is said to
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Fig. 2. The side information graphs for the six 4-message problems given
in (13). In Figures (a), (b) and (c), there is one isolated vertex, vertex 1, which
has no incoming edges. In Figures (d), (e), and (f), there is a pair of disjoint
cycles, {1, 4} and {2, 3}.

be isolated if it has no incoming edges. That is, there does
not exist any edge e = (v′, v) ∈ E for some v′ ∈ [n]. Two
cycles K,K ′ ⊆ V in G are said to be disjoint if K ∩K ′ = ∅.

Example 13: Consider the following 6 distributed index
coding problems with n = 4 and equal link capacities
CJ = 1, J ∈ N \ {∅},

(1|−), (2|4), (3|2), (4|3),
(1|−), (2|4), (3|2), (4|1, 3),

(1|−), (2|1, 4), (3|1, 2), (4|1, 3),
(1|4), (2|3), (3|2), (4|1, 3),

(1|4), (2|3), (3|2), (4|1, 2, 3),
(1|4), (2|3), (3|1, 2), (4|1, 2), (62)

whose side information graphs are shown in Figure 2. For
the problems shown in Figures 2(a), 2(b), and 2(c), the touch
grouping outer bound Rt yields

∑
i∈[4]Ri ≤ 19.5. With

P = {P1, N \ P1}, where P1 = {J ∈ N : |J \
{1}| ≤ 1}, a tighter upper bound of 19 can be obtained
by the grouping PM outer bound for these three prob-
lems, matching the sum-capacity. For the problems shown in
Figures 2(d), 2(e), and 2(f), the touch grouping outer bound
Rt yields

∑
i∈[4]Ri ≤ 24. With P ′ = {P ′

1, P
′
2, N \ P ′

1 \
P ′

2}, where P ′
1 = {{1}, {2}, {3}, {4}}, P ′

2 = {J ∈ N :
|J | = 2, J ∈ T{1,4},{2,3}}, a tighter upper bound of 23.5
can be obtained by the grouping PM outer bound for these
three problems, matching the sum-capacity. For all these six
problems in Figure 2, the achievable rates are obtained through
Theorem 1 with (P,D), where Pi = N , i ∈ [n], and D
is generated by Algorithm 1 presented in Section V. As we
can see, there is a common pattern among the problems of
Figures 2(a), 2(b), and 2(c). That is, there is an isolated vertex,
vertex 1. Also, in their capacity-achieving server grouping P ,
P1 only contains servers that have no more than one message
apart from message 1. There also exists a common pattern
among the problems of Figures 2(d), 2(e), and 2(f). That is,
there are two disjoint cycles, cycle {1, 4} and cycle {2, 3}.
Also, in their capacity-achieving server grouping P ′, P ′

2 only

contains servers that have one message from each disjoint
cycle.

Remark 11: For the problems in Figures 2(a), 2(b), and 2(c)
with the capacity-achieving P , the following constraints are
given by Axiom (36)

f({1}, {j}) + f({1}, {2, 3, 4} \ {j})
= f({1}, {2, 3, 4}), j ∈ {2, 3, 4}. (63)

If the constraints above were to be removed from Theorem 3,
then the upper bounds would become looser than 19. Similarly,
for the problems in Figures 2(d), 2(e), and 2(f) with the
capacity-achieving P ′, the following two constraints are given
by Axiom (36)

f({1, 2}, {1}) + f({1, 2}, {4}) = f({1, 2}, {1, 4}),
f({1, 2}, {2}) + f({1, 2}, {3}) = f({1, 2}, {2, 3}).

If the constraints above were to be removed from Theorem 3,
then the upper bounds would become looser than 23.5.

The following definition generalizes the server grouping
construction based on the fd-separation.

Definition 9 (fd grouping): Consider the distributed index
coding problem (i|Ai), i ∈ [n], whose side information graph
G contains k ≥ 0 mutually disjoint cycles, denoted by Kj ⊆
[n], j ∈ [k], Kj ∩ Kj′ = ∅ for any j, j′ ∈ [k], j 
= j′, and
|K0| ≥ 0 isolated vertices, v ∈ K0 ⊆ [n]. The fd grouping,
denoted by Pfd, with m = (2k − 1 − k) + 2 = 2k − k + 1
groups is defined as follows. The first server group is given by

P1 = {J ∈ N : |J \K0| ≤ 1}. (64)

For � = 2, · · · ,m− 1, the server groups are

PG̃�
= {J ∈ N : |J \K0| = |G̃�|, J ∈

⋂

j∈G̃�

TKj}, (65)

where G̃� ⊆ [k], |G̃�| ≥ 2. Note that there are (2k − 1 − k)
such groups. Finally, the last server group Pm is defined as

Pm = N \ (
⋃

G̃⊆[k]:|G̃|≥2

PG̃) \ P1. (66)

With Pfd, we have the following corollary, namely, the fd
grouping outer bound, from Theorem 3. As the fd grouping
does not result in any simplified expression for the grouping
PM outer bound compared to Theorem 3, we do not repeat the
rate constraint inequality (29) and Axioms (30)-(36) below.

Corollary 5: The capacity region of the distributed index
coding problem (i|Ai), i ∈ [n], with link capacity tuple C
satisfies

C (C) ⊆ RPfd ,

where RPfd denotes the outer bound given by the grouping
PM outer bound with any valid fd grouping Pfd.

The proof is trivial and thus omitted.
We give an example showing the efficacy of the fd grouping

outer bound Rfd when there are both disjoint cycles and
isolated vertices in the side information graph.

Example 14: Consider the distributed index coding prob-
lem (1|−), (2|3), (3|2), (4|5), (5|4) with equal link capacities
CJ = 1, J ∈ N \ {∅}. The side information graph of the
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problem consists of two disjoint cycles K1 = {2, 3} and
K2 = {4, 5}, as well as one isolated vertex 1, and thus
K0 = {1}. For easier notation, set

Q1 = {{1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {1, 4}, {1, 5}},
Q2 = {{2, 4}, {2, 5}, {3, 4}, {3, 5}, {1, 2, 4},

{1, 2, 5}, {1, 3, 4}, {1, 3, 5}},

and Q3 = N \ Q1 \ Q2. We have m = 22 − 2 + 1 = 3, and
the fd grouping as Pfd = {P1, P{1,2}, P3}, where P1 = Q1,
P{1,2} = Q2, and P3 = Q3. The fd grouping outer bound
with Pfd yields R1 + R2 + R3 + R4 + R5 ≤ 47 2

3 , which is
tight and matches the lower bound on the sum-capacity. For
the latter, we use in Theorem 2 seven decoding message set
tuples D1,D2, · · · ,D7 as follows.

In D1, we set D1 = {1} and Di = {1, i}, i ∈ {2, 3, 4, 5}.
In D2, we set D1 = {1}, Di = [n] \ Ai, i ∈ {2, 3}, and

Di = {1, i}, i ∈ {4, 5}.
In D3, we set D1 = {1, 4, 5}, Di = [n] \ Ai, i ∈ {2, 3},

and Di = {1, i}, i ∈ {4, 5}.
In D4, we set D1 = {1}, Di = {1, i}, i ∈ {2, 3}, and

Di = [n] \Ai, i ∈ {4, 5}.
In D5, we set D1 = {1, 2, 3}, Di = {1, i}, i ∈ {2, 3}, and

Di = [n] \Ai, i ∈ {4, 5}.
In D6, we set D1 = {1}, Di = [n] \Ai, i ∈ {2, 3, 4, 5}.
In D7, we set Di = [n] \Ai, i ∈ [n].
We also use the following three decoding server groups

P1,P2,P3. In P1, we set Pi = Q1, i ∈ [n]. In P2, we set
Pi = Q2, i ∈ [n], and in P3, we set Pi = Q3, i ∈ [n].
Hence, there are in total 7 ∗ 3 = 21 decoding configurations,
(Pj ,Dk), j ∈ [3], k ∈ [7]. We set Ri(P,D), i ∈ [n],
CJ (P,D), J ∈ N , and SK(P,D), K ⊆ [n], to zero for all
other (P,D) configurations. Notice that there is an interesting
correspondence between the server groups in Pfd used in
the outer bound and the decoding server groups used in the
inner bound. Whether such correspondence has its roots in
some deeper structural properties of the problem remains to
be studied in future.

E. A Hierarchy of Server Groupings

In some distributed index coding problems, it is more
advantageous to use “finer” server groupings than we have
introduced so far. As hinted before, there is a natural hierarchy
of server groupings in terms of tightness of the resulting outer
bound. We need the following definition to formalize this.

Definition 10 (Grouping refinement and aggregation): For
any two valid server groupings Q = {Q1, Q2, · · · , Q�} and
P = {P1, · · · , Pm}. We say that P is a refinement of Q and
that Q is an aggregation of P , if for every i ∈ [�], Qi = PG

for some G ⊆ [m].
In words, every server group in Q is the union of some

server groups in P . We have the following relationship
between the outer bounds RP and RQ.

Proposition 3: If P is a refinement of Q, or equivalently,
Q is an aggregation of P , then RP is no looser than RQ,
i.e., RP ⊆ RQ.

The proof is presented in Appendix H. Note that Proposi-
tion 3 clarifies the relationship between the individual touch
grouping and any other touch grouping.

Definition 11 (Intersecting refinement of groupings): For
two valid server groupings P and Q,

P ∧Q = {P ∩Q : P ∈ P , Q ∈ Q} (67)

is the intersecting refinement of both groupings.
Example 15: Consider the distributed index coding prob-

lem (1|2), (2|1), (3|5), (4|3), (5|4) with equal link capacities
CJ = 1, J ∈ NA where

NA = {{1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5},
{3, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}}

and CJ = 0 otherwise. The grouping PM outer bounds with
the touch grouping

Pt = {T{1} ∩NA, T{2,3,4,5} ∩NA}, (68)

and the fd grouping Pfd = {P1, P2 = NA \ P1}, where

P1 = {{1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}}, (69)

yield the sum-capacity upper bound 14.5. With the intersecting
refinement grouping,

Pt ∧ Pfd = {T{1} ∩ P1, T{1} ∩ P2,

T{2,3,4,5} ∩ P1, T{2,3,4,5} ∩ P2}, (70)

a tighter upper bound of 14 on the sum-capacity is estab-
lished, which matches the lower bound. For the latter, we use
Theorem 1 with (P,D), where Pi = NA, i ∈ [n], and D is
generated by Algorithm 1 in Section V.

Based on Proposition 3, we can establish the tightest group-
ing PM outer bound by using the “finest” server grouping
P∗ = {{J} : J ∈ N \ {∅}} with m = 2n − 1, referred
to as the single-server grouping, which consists of all single
nonempty servers and is a refinement of every other valid
server grouping.

We present the following corollary, namely, the single-
server grouping outer bound, without repeating (29)-(36).

Corollary 6: The capacity region of the distributed index
coding problem (i|Ai), i ∈ [n], with link capacity tuple C
satisfies

C (C) ⊆ R∗,

where R∗ denotes the outer bound given by the grouping PM
outer bound with the single-server grouping P∗.

Remark 12: In a similar fashion as in [30], it can be shown
that the single-server grouping outer bound region R∗ is
as tight as the apparently stronger outer bound in which
all Shannon-type inequalities of the entropy function for the
distributed index coding problem are used.

If all servers are active, the computational complexity of
R∗ is prohibitive even for small n as the number of the inter-
mediate variables f(G,K), G ⊆ [m],K ⊆ [n] in Corollary 6
is 2|N\{∅}|+n = 22n−1+n, which is doubly exponential to n.

Finally, based on Proposition 3 we can establish the loosest
grouping PM outer bound by using the “coarsest” server
grouping P∗ = {N} with m = 1, referred to as the all-server
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grouping, which consists of a single all-server group and is
an aggregation of every other valid server grouping. With
P∗, the grouping PM outer bound in Theorem 3 simplifies
to R∗, namely, the all-server grouping outer bound, shown as
follows.

Corollary 7: The capacity region of the distributed index
coding problem (i|Ai), i ∈ [n], with link capacity tuple C
satisfies

C (C) ⊆ R∗,

where R∗ consists of all rate tuples R such that

Ri ≤ g(Bi ∪ {i})− g(Bi), i ∈ [n], (71)

for some g(K),K ⊆ [n], satisfying

g(∅) = 0, (72)

g(K) ≤
∑

J:J∈TK

CJ , (73)

g(K) ≤ g(K ′), if K ⊆ K ′, (74)

g(K ∩K ′) + g(K ∪K ′) ≤ g(K) + g(K ′), (75)

g(Bi ∪ {i})− g(Bi) = g({i}), i ∈ [n]. (76)

Proof: As G ⊆ [1], G can be either ∅ or {1}. Also,
f(∅,K) = 0 for any K ⊆ [n]. Therefore, it suffices to
use a single set function g(K) = f({1},K),K ⊆ [n] in
the axioms and the rate constraint inequality in Corollary 7.
With all-server grouping P∗ = {N},m = 1, we have
(PG ∪ PG′) \ (PG ∩ PG′) ⊆ TK only for G = G′ or K = ∅,
and thus Axiom (30) in Theorem 3 becomes trivial. Also,
there never exists two disjoint nonempty sets K,K ′ ⊆ [n]
such that P{1} = N ⊆ (N \ TK,K′). This means that
Axiom (36) can only give trivial inequalities with the all-server
grouping. In summary, in Corollary 7, there are no constraints
corresponding to Axioms (30) and (36) in Theorem 3.

Even though the all-server grouping outer bound R∗ on
the capacity region is the loosest bound one can get from the
grouping PM outer bound, it is already no looser than the
(corrected) outer bound8 proposed in [2], which we refer to
as RfL and restate it as follows.

Proposition 4 ([2]): The capacity region of the distributed
index coding problem (i|Ai), i ∈ [n], with link capacity tuple
C satisfies

C (C) ⊆ RfL ,

where RfL consists of all rate tuples R such that for any
L ⊆ [n]

Ri ≤ fL((Bi ∪ {i}) ∩ L)− fL(Bi ∩ L), i ∈ L, (77)

for some fL(K), K ⊆ L, such that

fL(∅) = 0, (78)

fL(L) ≤
∑

J:J∈TL

CJ , (79)

fL(K) ≤ fL(K ′), if K ⊆ K ′ ⊆ L, (80)

8In the original version of the outer bound in [2], the rate constraint
inequality was expressed as Ri ≤ fL(Bi ∪ {i}) − fL(Bi), i ∈ L, which is
not correct, as the set function fL(K) is only defined for K ⊆ L and Bi

may not be a subset of L. We rectify this by taking the intersection of L and
the argument of fL(K) in (77).

fL(K ∩K ′) + fL(K ∪K ′) ≤ fL(K) + fL(K ′). (81)

Proposition 5: For any problem (i|Ai), i ∈ [n], with link
capacity tuple C, it holds that R∗ ⊆ RfL .

The proof is presented in Appendix I.
The computational complexity of the all-server grouping

outer bound R∗ will be the lowest. And even performing FME
to compute the outer bound on the entire capacity region for
a general C is possible for small to moderate n as the total
number of variables is only 2n + 2n − 1 + n in Corollary 7,
accounting for 2n g(K),K ⊆ [n] variables, 2n − 1 link
capacity variables CJ , J ∈ N \ {∅}, and n rate variables
Ri, i ∈ [n].

Example 16: We first revisit the problem (1|−), (2|4),
(3|4), (4|3) discussed in Example 12. A looser upper
bound of 22 on the sum-capacity is given by the all-
server grouping outer bound R∗ in comparison to the
tight bound established earlier. However, R∗ can some-
times yield tight bounds. For example, consider the problem
(1|4), (2|1, 4), (3|1, 2, 4), (4|1, 2, 3) with equal link capacities
CJ = 1, J ∈ N \ {∅}. The all-server grouping outer bound
R∗ yields the tight upper bound of 22 on the sum-capacity,
which matches the lower bound in Corollary 1 with Pi = N
and Di = [n] \Ai, i ∈ [n].

F. Summary of the Outer Bounds

Different server groupings that we presented in this section
are summarized in Table II.

V. NUMERICAL RESULTS

We numerically evaluate lower and upper bounds on the
sum-capacity for all 218 non-isomorphic four-message dis-
tributed index coding problems with equal link capacities,
CJ = 1, J ∈ N \{∅}. For brevity, each problem in this section
is represented with a problem number and the corresponding
receiver side information is listed in Appendix J. The upper
bounds on the sum-capacity are computed using the special
cases of the grouping PM outer bound proposed in Section IV.
The lower bound are given by distributed composite coding,
computed using a fixed decoding configuration in Theorem 1.
For both upper and lower bounds, we use LP to maximize the
sum-rate R1+R2+R3+R4. It turns out that the lower bounds
match the upper bounds, thus establishing the sum-capacity,
for all 218 problems.

The results are summarized in Table III. On the right col-
umn, each tuple denotes a list of problem numbers, followed
by their sum-capacity in bold face. For example, (16, 30, 60,
102; 19) means that problems 16, · · · , 102 have the same sum-
capacity of 19. The left column shows outer bounds that are
used to yield the tight upper bounds on the sum-capacity. It
turns out that the all-server grouping outer bound R∗ in Corol-
lary 7 with m = 1 group can solve 145 out of 218 problems
with minimum computational complexity. For the 63 problems
shown in the middle row in Table III, tight upper bounds
on the sum-capacity can be obtained by the touch grouping
outer bound Rt with PV defined in (51). Notice that for
these aforementioned 63 + 145 = 208 problems, except for
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TABLE II

SPECIAL CASES OF THE GROUPING PM OUTER BOUND AND THEIR INDICATIVE COMPUTATIONAL COMPLEXITIES

the 6 problems (149, 176, 179, 200, 203, 212; 26) with sum-
capacity of 26, they are also solvable by Proposition 2. For
the remaining 10 problems, the touch grouping outer bound
Rt gives loose results, and the fd grouping outer bound Rfd

is necessary to yield tight upper bounds. A subset of these
problems were discussed in Example 13 and shown in Figure 2
and they all involve either isolated vertices or disjoint cycles
in their side information graph.

For the lower bounds for all 218 problems, we used (P,D)
in Theorem 1 where Pi = N , i ∈ [n], and D = D, generated
according to [19, Algorithm 2], which is repeated as follows.

Algorithm 1 Decoding Message Sets D
Input : Index coding problem (i|Ai), i ∈ [n].
Output: Decoding message set D = (Di, i ∈ [n]).

1 Initialize Di = {i}, i ∈ [n].
2 As long as there exists i, j ∈ [n] such that Aj ⊆ Ai ∪Di

and Dj 
⊆ Ai ∪Di, update Di ← Di ∪ (Dj \Ai). If no
such i, j exist, terminate the algorithm.

VI. CONCLUSION

In this work, we studied the distributed index coding
problem in a general model, where for n messages in the
system all possible 2n− 1 servers, each containing a different
nonempty subset of messages were taken into account. Due to
the exponential size of the problem and its distributed nature,
this problem is even more challenging than its centralized
counterpart, which itself is an open problem. We showed that
cooperative encoding among distributed servers combined with
flexible utilization of degrees of freedom for decoding can
achieve strictly larger rate regions compared to the existing
work [1], [2], [22], [23]. The new enhanced fractional rate
splitting methods of Theorem 2 can have applications in other
network information theory problems to improve upon stan-
dard convexification techniques that are based on time sharing.

This work also inspired us to develop a more advanced three-
layer composite coding scheme in [33] for the centralized
index coding problem that harvests more degrees of freedom in
composite coding. For the outer bound on the capacity region
of the distributed index coding problem, we developed a new
grouping PM outer bound and showed a general hierarchy
that allows a full spectrum of tradeoffs between computational
complexity and tightness of outer bounds. We demonstrated
the utility of the achievable rate regions and performance
bounds through several simple examples and extensive numer-
ical results for a small number (n = 4) of messages.

We conclude this paper with several open questions and
intriguing research directions for the future.

The computational complexity of the proposed distributed
composite coding scheme can be of a practical concern,
given the large number of composite index rate variables and
decoding configurations. To address this issue, one may extend
and further improve the simplification techniques in [19], [33]
developed for the centralized scenario. Even for the centralized
index coding problem the composite coding inner bound may
not be tight (see [18, Figure 6.15]), which will carry over to
the distributed case. It is a worthwhile research direction to
better understand the limitations of composite coding and try
to address them more systematically.

Practical code design is an important open problem in
distributed index coding. Recently in [34], [35], the celebrated
minrank approach for the centralized linear index coding was
extended to the distributed index coding problem, providing
non-trivial yet still suboptimal and computationally inefficient
code design techniques. While composite coding is not prac-
tical due to random coding, one interesting observation is that
after applying the simplification techniques proposed in [19]
to eliminate unnecessary composite indices, the remaining
composite indices may guide which linear codes are efficient.
For example, consider the centralized index coding prob-
lem (1|4), (2|1, 3), (3|1, 2), (4|1, 3) with equal message length
ti = t, i ∈ [n], whose symmetric capacity of 1/2 can be
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TABLE III

SUM-CAPACITY FOR ALL 218 NON-ISOMORPHIC 4-MESSAGE DISTRIBUTED INDEX CODING PROBLEMS. LINK CAPACITIES ARE CJ = 1, J ∈ N \ {∅}

achieved using composite coding with D generated according
to Algorithm 1. Among the 24 − 1 = 15 composite indices
SK , K ⊆ [n], K 
= ∅, only two indices, S{1,4} and S{1,2,3,4},
remain after applying the heuristic reduction method in [19].
Note that the symmetric capacity can also be achieved via
sending the scalar linear codeword (x1⊕x4, x1⊕x2⊕x3⊕x4)
of length 2t. Note the correspondence between the remaining
composite indices and the optimal linear codeword, which can
also be observed in many other problems. However, a precise
theory behind such a correspondence remains unknown at the
moment and whether such a relation holds for a general class
of centralized or distributed index coding problems is an open
problem.

As shown in [17], Shannon-type inequalities of the entropy
function are not sufficient to obtain tight performance bounds
even for the centralized index coding problem. Specific cen-
tralized problems where non-Shannon-type inequalities are
needed for tight performance bounds were identified in [17],
[36], [37]. It follows automatically that non-Shannon-type
inequalities are also needed for some distributed index coding
problems. Many questions remain, however, such as for which
problems non-Shannon type inequalities are needed and how
much would they improve upon Shannon-type inequalities.

APPENDIX A
PROOF OF THEOREM 1

Analysis of error for the first-step decoding is as follows.
We partition the error event according to the collection M ⊆
Γ∗(Pi) \ 2Ai for erroneous composite indices. That is, ŵK 
=
wK iff K ∈M . Therefore, by the union bound, we have

Pe = P{yJ = yJ(ŵK ,K ∈ 2J) for all J ∈ Pi for some

(ŵK ,K ∈ Γ∗(Pi)) 
= (wK ,K ∈ Γ∗(Pi))}
≤

∑
M⊆Γ∗(Pi)\2Ai

∑
(ŵK ,K∈Γ∗(Pi)):
ŵK �=wK ,K∈M,
ŵK=wK ,K /∈M

P

⎧⎨
⎩

⋂
J∈Pi,J∈Γ∗(M)

{
yJ = yJ(ŵK ,K ∈ 2J)

}
⎫⎬
⎭

<
∑

M⊆Γ∗(Pi)\2Ai

2
�

K∈M sK−
�

J∈Γ∗(M) ∩ Pi
rJ (82)

<
∑

M⊆Γ∗(Pi)\2Ai

2
�

K∈M (rSK+1)−
�

J∈Γ∗(M)∩ Pi
(rCJ−1)

=
∑

M⊆Γ∗(Pi)\2Ai

2r
�

K∈M SK · 2|M|+|Γ∗(M)∩Pi|

2r
�

J∈Γ∗(M) ∩ Pi
CJ

,

where (82) holds since for each composite index collection
M , the number of erroneous tuples is

∏
K∈M (2sK − 1) <

2
�

K∈M sK , and for each erroneous composite index tuple with
ŵK 
= wK , iff K ∈ M , the probability that it is mapped to
the same codeword yJ as the correct composite index tuple
for all J ∈ Γ∗(M) ∩ Pi is 2−

�
J∈Γ∗(M) ∩ Pi

rJ . Note that only
servers in Γ∗(M) can generate composite index (indices) in
the collection M and the intersection with Pi is necessary due
to receiver i’s choice of server group Pi.

Therefore, the error probability Pe tends to zero as r →∞,
provided that

∑
K∈M

SK <
∑

J∈Γ∗(M)∩Pi

CJ , ∀M ⊆ Γ∗(Pi) \ 2Ai , i ∈ [n].

Analysis of error for the second-step decoding is as follows.
We partition the error event according to message index
subsets L ⊆ Δi. That is, x̂j 
= xj iff j ∈ L. Therefore,
by the union bound, we have

Pe = P{wK(x̂K) = ŵK for all K ∈ Γ∗(Pi), K ⊆ Δi ∪Ai

for some x̂j 
= xj , j ∈ Δi}

≤
∑

L⊆Δi

∑
x̂Δi

:
x̂j �=xj,j∈L
x̂j=xj,j /∈L

P

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⋂
K⊆Δi∪Ai,
K∈Γ∗(Pi),

K∩L �=∅

{wK(x̂K) = ŵK}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

≤
∑

L⊆Δi

2
�

j∈L tj−
�

K∈K sK (83)

<
∑

L⊆Δi

2
�

j∈L(rRj+1)−
�

K∈K rSK

=
∑

L⊆Δi

2r(
�

j∈L Rj−
�

K∈K SK)+|L|,

where K = {K : K ⊆ Δi ∪Ai,K ∈ Γ∗(Pi),K ∩L 
= ∅} and
(83) holds since for each message index subset L, the number
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of erroneous messages is
∏

j∈L(2tj − 1) < 2
�

j∈L tj and
for each erroneous message tuple with x̂j 
= xj , iff j ∈ L,
the probability that it is mapped to the same composite index
wK as the correct message tuple for all K ∈ K is 2−

�
K∈K sK .

Therefore, the error probability Pe tends to zero as r →∞,
provided that

∑
j∈L

Rj <
∑

K⊆Δi∪Ai,
K∈Γ∗(Pi),

K∩L �=∅

SK , ∀L ⊆ Δi, i ∈ [n].

Note that only composite indices that are both in Γ∗(Pi)
and 2Δi∪Ai are useful for receiver i decoding of xΔi .

APPENDIX B
PROOF OF PROPOSITION 1

We first prove the following lemma.
Lemma 1: If P ′ ⊆ P , then

Γ∗(P ′) \ Γ∗(P \ P ′) = Γ∗(P ) \ Γ∗(P \ P ′). (84)

Proof: As P ′ ⊆ P , we have that Γ∗(P ′) ⊆ Γ∗(P ), and
therefore, Γ∗(P ′) \ Γ∗(P \ P ′) ⊆ Γ∗(P ) \ Γ∗(P \ P ′).

Now consider an arbitrary J ∈ Γ∗(P )\Γ∗(P \P ′). As J ∈
Γ∗(P ), there must exist some J1 ∈ P such that J ⊆ J1. Since
J 
∈ Γ∗(P\P ′), we know that J1 
∈ P\P ′. Hence, J1 ∈ P ′ and
thus J ∈ Γ∗(P ′). Therefore, we have J ∈ Γ∗(P ′)\Γ∗(P \P ′)
and thus Γ∗(P ) \ Γ∗(P \ P ′) ⊆ Γ∗(P ′) \ Γ∗(P \ P ′).

In summary, we have Γ∗(P ′) \ Γ∗(P \ P ′) = Γ∗(P ) \ Γ∗
(P \ P ′).

Now we prove Proposition 1 as follows.
For easier reference, we repeat (4) here for a given

(Pi, i ∈ [n]),
∑

K∈M

SK <
∑

J∈Γ∗(M)∩Pi

CJ ,

∀M ⊆ Γ∗(Pi) \ 2Ai , i ∈ [n]. (85)

According to Lemma 1, for any Q ⊆ Pi we have

Γ∗(Q) \ Γ∗(Pi \Q) \ 2Ai = Γ∗(Pi) \ Γ∗(Pi \Q) \ 2Ai .

Therefore, for the same Pi as chosen above, (11) can be
written as

∑
K∈Γ∗(Pi)\Γ∗(Pi\Q)\2Ai

SK <
∑
J∈Q

CJ ,

∀Q ⊆ Pi, i ∈ [n]. (86)

We prove that for any given inequality from the system of
inequalities (85) there exists an inequality in the system of
inequalities (86) that is no looser and vice versa.

First, for any M ⊆ Γ∗(Pi) \ 2Ai in (85) we construct
Q = Γ∗(M) ∩ Pi. Therefore, the RHS of (85) and (86)
become identical. Our claim is that M ⊆ Γ∗(Pi)\Γ∗(Pi\Q)\
2Ai or that if K ∈ M then K ∈ Γ∗(Pi) \ Γ∗(Pi \ Q) \ 2Ai .
Note that we have M ⊆ Γ∗(Pi) \ 2Ai , therefore, if K ∈ M
it is automatic that K ∈ Γ∗(Pi) \ 2Ai . So it remains to show
that K /∈ Γ∗(Pi \ Q), which can be proven by contradiction
as follows. For any K ∈ M , assume that K ∈ Γ∗(Pi \
Q) = Γ∗(Pi \Γ∗(M)), which indicates that there exists some

J ∈ Pi \ Γ∗(M) such that K ⊆ J . However, as K ∈ M
and K ⊆ J , we have J ∈ Γ∗(M), which contradicts with
J ∈ Pi \ Γ∗(M). Therefore, for any K ∈ M , we must have
K /∈ Γ∗(Pi\Q). In summary, for any given M ⊆ Γ∗(Pi)\2Ai

and the corresponding inequality from (85), we have proved
that there exists an inequality in (86) that is no looser.

To prove the other direction, for any Q ⊆ Pi we construct
M = Γ∗(Pi) \ Γ∗(Pi \ Q) \ 2Ai . Therefore, the LHS of
(85) and (86) become identical. Our claim is that if J ∈
Γ∗(M) ∩ Pi then J ∈ Q or that Γ∗(M) ∩ Pi ⊆ Q.
Before proving our claim, we show that with the choice of
M = Γ∗(Pi) \ Γ∗(Pi \Q) \ 2Ai , we have

M = Γ∗(M) ∩ Γ∗(Pi). (87)

The direction M ⊆ Γ∗(M) ∩ Γ∗(Pi) is easy, as M ⊆ Γ∗(M)
and M ⊆ Γ∗(Pi) by construction. To show Γ∗(M)∩Γ∗(Pi) ⊆
M , for all J ∈ Γ∗(M) ∩ Γ∗(Pi), we have J ∈ Γ∗(M) and
J ∈ Γ∗(Pi). One can show a contradiction in assuming J ∈
Γ∗(Pi\Q) or J ∈ 2Ai . Therefore, J ∈ Γ∗(Pi), J /∈ Γ∗(Pi\Q)
and J /∈ 2Ai , hence J ∈ M , which completes the proof
of (87).

Now we go back to proving the claim Γ∗(M) ∩ Pi ⊆
Q or equivalently, proving Pi\Q ⊆ Pi\(Γ∗(M) ∩ Pi). For all
J ∈ Pi \Q, we have J ∈ Pi, which means J ∈ Γ∗(Pi). Also,
J ∈ Pi \Q means J ∈ Γ∗(Pi \Q). Since M was constructed
as M = Γ∗(Pi)\Γ∗(Pi \Q)\2Ai, then J ∈ Γ∗(Pi \Q) means
that J /∈ M . However, from J /∈ M , J ∈ Γ∗(Pi) and (87),
we conclude that J /∈ Γ∗(M), which means J /∈ Γ∗(M)∩Pi.
Therefore, J ∈ Pi \ (Γ∗(M)∩Pi), which completes the proof
of our claim. In summary, for any given Q ⊆ Pi and the
corresponding inequality from (86), we have proved that there
exists an inequality in (85) that is no looser.

In conclusion, we have proved that the system of inequalities
(85) and (86) are identical for a given (Pi, i ∈ [n]).

APPENDIX C
EXAMPLE OF THEOREM 1 WITH SELECTED

ACTIVE SERVERS

Example 17: Consider the distributed index coding problem
(1|4), (2|1, 3), (3|1, 2), (4|2, 3) with two active servers NA =
{{1, 2, 3}, {2, 3, 4}} with positive link capacities CJ , J ∈ NA

and CJ = 0, J ∈ N \NA. Note that

Γ∗(NA) =
⋃

J∈NA

2J

= {∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}
∪ {∅, {2}, {3}, {2, 3}, {4}, {2, 4}, {3, 4}, {2, 3, 4}}

= {∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3},
{4}, {2, 4}, {3, 4}, {2, 3, 4}}.

We choose Pi = NA, i ∈ [n], D1 = {1}, D2 = {2, 4},
D3 = {3, 4} and D4 = {1, 4}. Hence, D1 ∪A1 = {1, 4}, and
Di∪Ai = {1, 2, 3, 4}, i = 2, 3, 4. Note that Δi = Di, i ∈ [n].
Active inequalities from (3) are given in (88), shown at the
bottom of the next page.

Before detailing (4), we note that with respect to
NA, for M1 = {{1}, {1, 2}, {1, 3}, {1, 2, 3}}, we have
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Γ∗(M1) = {{1, 2, 3}}, for M2 = {{4}, {2, 4}, {3, 4},
{2, 3, 4}}, we have Γ∗(M2) = {{2, 3, 4}}, and for M3 =
Γ∗(NA), we have Γ∗(M3) = NA. With this in mind, we write
the active inequalities (4) as (89), shown at the bottom of the
page.

We apply FME to eliminate all present SK variables and
find that the achievable rate-capacity tuple (R,C) satisfies

R1 < C{1,2,3},

R4 < C{2,3,4},

R1 +R2 < C{1,2,3} + C{2,3,4},

R1 +R3 < C{1,2,3} + C{2,3,4},

R2 +R4 < C{1,2,3} + C{2,3,4},

R3 +R4 < C{1,2,3} + C{2,3,4}.

It can be verified that the above rate region matches the all-
server grouping outer bound R∗ in Corollary 7, and thus
establishes the capacity region for the problem.

In the following we rewrite active first-step decoding
inequalities in the form of (11). Recall that Pi = NA =
{{1, 2, 3}, {2, 3, 4}}, i ∈ [n]. For Q1 = {{1, 2, 3}}, we have
Γ∗(Q1) \ Γ∗(Pi \ Q1) = {{1}, {1, 2}, {1, 3}, {1, 2, 3}}, for
Q2 = {{2, 3, 4}}, we have Γ∗(Q2) \ Γ∗(Pi \ Q2) =
{{4}, {2, 4}, {3, 4}, {2, 3, 4}}, and for Q3 = Pi = NA,
we have

Γ∗(Q3) \ Γ∗(Pi \Q3)
= {{1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3},
{1, 2, 3}, {4}, {2, 4}, {3, 4}, {2, 3, 4}}.

Inequality (11) (excluding inactive inequalities) gives (89),
which showcases the equivalence of (4) and (11) as claimed
by Proposition 1.

APPENDIX D
REMAINDER OF PROOF OF THEOREM 3

First we present a lemma based on the encoding condition
in (27) and the touch structure.

Lemma 2: For any set K ⊆ [n], H(TK |XKc) = 0.

Proof: For any set K ⊆ [n], we have

H(TK |XKc) = H(Y{J:J∈N,J∩K=∅}|XKc)
= H(Y{J:J⊆Kc}|XKc)

≤
∑

J⊆Kc

H(YJ |XKc) = 0,

where the last equality follows from the encoding condition
in (27).

Now we prove that the set function f(G,K) defined in (44)
satisfies Axioms (30)-(36) of Theorem 3. Toward that end,
we first show that for any � > 0, the set function fε(G,K)
defined in (41) satisfies the following conditions, which are
counterparts of (30)-(34) and (36) (we deal with (35) later):

fε(G,K) = fε(G′,K),
if (PG ∪ PG′) \ (PG ∩ PG′) ⊆ TK , (90)

fε(∅,K) = fε(G, ∅) = 0, (91)

fε(G,K) ≤
∑

J:J∈PG,J∈TK

CJ , (92)

fε(G,K) ≤ fε(G′,K ′), if K ⊆ K ′, G ⊆ G′, (93)

fε(G ∪G′,K ∩K ′) + fε(G ∩G′,K ∪K ′)
≤ fε(G,K) + fε(G′,K ′), (94)

fε(G,K) + fε(G,K ′) = fε(G,K ∪K ′),
if K ∩K ′ = ∅, PG ⊆ (N \ TK,K′). (95)

1) We show that fε(G,K) satisfies (90) as follows. Note
that if ((PG ∪ PG′) \ (PG ∩ PG′)) ⊆ TK , according to
Lemma 2, we have

0 = H(TK |XKc)
≥ H((PG ∪ PG′) \ (PG ∩ PG′)|XKc)
≥ H(PG \ PG′ |XKc)
≥ H(PG \ PG′ |XKc , PG′), (96)

0 = H(TK |XKc)
≥ H((PG ∪ PG′) \ (PG ∩ PG′)|XKc)
≥ H(PG′ \ PG|XKc)
≥ H(PG′ \ PG|XKc , PG). (97)

R1 < S{1}, i = 1, L = Δ1,
R2 < S{2} + S{1,2} + S{2,3} + S{1,2,3} + S{2,4} + S{2,3,4}, i = 2, L = {2} ⊂ Δ2,
R4 < S{4} + S{2,4} + S{3,4} + S{2,3,4}, i = 2, 3, 4, L = {4} ⊂ Δi,
R2 +R4 < S{2} + S{1,2} + S{1,3} + S{2,3} + S{1,2,3} + S{4} + S{2,4} + S{2,3,4}, i = 2, L = Δ2,
R3 < S{3} + S{1,3} + S{2,3} + S{1,2,3} + S{3,4} + S{2,3,4}, i = 3, L = {3} ⊂ Δ3,
R3 +R4 < S{3} + S{1,3} + S{2,3} + S{1,2,3} + S{4} + S{2,4} + S{3,4} + S{2,3,4}, i = 3, L = Δ3

R1 +R4 < S{1} + S{1,2} + S{1,3} + S{1,2,3} + S{4} + S{2,4} + S{3,4} + S{2,3,4}, i = 4, L = Δ4.

(88)

S{1} + S{1,2} + S{1,3} + S{1,2,3} < C{1,2,3}, i = 1, 4,M = M1,
S{4} + S{2,4} + S{3,4} + S{2,3,4} < C{2,3,4}, i = 2, 3, 4,M = M2,∑

K∈N,K �={4} SK < C{1,2,3} + C{2,3,4}, i = 1,M = M3 \ {{4}},∑
K∈{{2},{1,2},{2,3},{1,2,3},{4},{2,4},{3,4},{2,3,4}}SK < C{1,2,3} + C{2,3,4}, i = 2,M = M3 \ 2{1,3},∑
K∈{{3},{1,3},{2,3},{1,2,3},{4},{2,4},{3,4},{2,3,4}}SK < C{1,2,3} + C{2,3,4}, i = 3,M = M3 \ 2{1,2},∑
K∈{{1},{1,2},{1,3},{1,2,3},{4},{2,4},{3,4},{2,3,4}}SK < C{1,2,3} + C{2,3,4}, i = 4,M = M3 \ 2{2,3}

(89)
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Given (96) and (97) as well as the nonnegativity of
entropy, we have

H(PG \ PG′ |XKc , PG′) = 0, (98)

H(PG′ \ PG|XKc , PG) = 0. (99)

Therefore,

fε(G,K) =
1
r
H(PG|XKc)

=
1
r
H(PG, PG′ \ PG|XKc)

=
1
r
H(PG′ , PG \ PG′ |XKc)

=
1
r
H(PG′ |XKc) = fε(G′,K),

where the second equality follows from (99) and the
fourth equality follows from (98).

2) We show that fε(G,K) satisfies (91) as follows. It is
obvious that for any G ⊆ [m], K ⊆ [n],

fε(∅,K) =
1
r
H(∅|XKc) = 0, (100)

fε(G, ∅) =
1
r
H(PG|X[n]) = 0, (101)

where the last equality of (101) is due to the encoding
condition in (27).

3) We show that fε(G,K) satisfies (92) as follows. Accord-
ing to Lemma 2 and the fact that conditioning cannot
increase entropy, we have

fε(G,K) =
1
r
H(PG|XKc)

=
1
r
H(PG ∪ TK |XKc)

=
1
r
H(TK , PG \ TK |XKc)

=
1
r
H(PG \ TK |XKc)

≤ 1
r
H(PG \ TK)

≤ 1
r

∑
J:J∈PG,J∈TK

rJ ≤
∑

J:J∈PG,J∈TK

CJ .

4) We show that fε(G,K) satisfies (93) as follows. Note
that if G ⊆ G′ ⊆ [m], K ⊆ K ′ ⊆ [n], then K ′c ⊆ Kc.
Therefore, we have

fε(G,K) =
1
r
H(PG|XKc)

≤ 1
r
H(PG|XK′c)

≤ 1
r
H(PG′ |XK′c) = fε(G′,K ′).

5) We show that fε(G,K) satisfies (94) as follows. Let us
define G1 = G \ G′, G2 = G′ \ G and G0 = G ∩ G′,
so that G ∪ G′ = G0 ∪ G1 ∪ G2 is the union of three
disjoint sets and G = G0 ∪ G1 and G′ = G0 ∪ G2.
Similarly, define K0 = Kc ∩K ′c, K1 = Kc \K ′c and
K2 = K ′c \ Kc so that Kc ∪ K ′c = K0 ∪ K1 ∪ K2,
Kc = K0 ∪K1 and K ′c = K0 ∪K2.

Set

f1 = fε(G∪G′,K ∩K ′)+ fε(G∩G′,K ∪K ′)+
1
r
H1,

where H1 = H(XK0∪K1∪K2) +H(XK0), and set

f2 = fε(G,K) + fε(G′,K ′) +
1
r
H2,

where H2 = H(XK0∪K1) + H(XK0∪K2). Due to the
message independence in (26) and sets K0,K1,K2

being disjoint, we have H1 = H2.
We can verify that for any server grouping P =
{P1, P2, · · · , Pm}, G ⊆ [m], we have

PG∪G′ =
⋃

i∈G0∪G1∪G2

Pi = PG ∪ PG′ , (102)

PG∩G′ =
⋃

i∈G0

Pi ⊆ PG ∩ PG′ , (103)

where (103) is due to the possible overlapping between
two different server groups, e.g., even for two disjoint
sets G1, G2 ⊆ [m], PG1 ∩ PG2 may not be ∅. If
P1, · · · , Pm happen to be disjoint server groups, we will
have PG∩G′ = PG ∩ PG′ .
Therefore, we can write

rf1 = H(PG∪G′ |XK0∪K1∪K2) +H(PG∩G′ |XK0)
+H1

= H(PG∪G′ ,XK0∪K1∪K2) +H(PG∩G′ ,XK0)
≤ H(PG ∪ PG′ ,XK0∪K1∪K2)

+H(PG ∩ PG′ ,XK0)
≤ H(PG,XK0∪K1) +H(PG′ ,XK0∪K2)
= H(PG|XK0∪K1) +H(PG′ |XK0∪K2) +H2

= rf2.

where the first inequality is due to (102) and (103) and
the second inequality is due to the submodularity of the
entropy function. Finally, we have

fε(G ∪G′,K ∩K ′) + fε(G ∩G′,K ∪K ′)

= f1−
1
r
H1 ≤ f2−

1
r
H2 = fε(G,K) + fε(G′,K ′).

6) We show that fε(G,K) satisfies (95) as follows. For any
K,K ′ ⊆ [n] such that K ∩K ′ = ∅, set L = [n] \ (K ∪
K ′). For PG ⊆ (N \TK,K′), according to Proposition 6
(to be presented in Appendix E), we have

0 = I(XK ;XK′ |PG,XL)
= H(XK |PG,XL) +H(XK′ |PG,XL)
−H(XK ,XK′ |PG,XL)

= H(PG,XK∪L)−H(PG,XL) +H(PG,XK′∪L)
−H(PG,XL)−H(PG,X[n]) +H(PG,XL)

= H(PG,XK∪L) +H(PG,XK′∪L)
−H(PG,XL)−H(X[n]) (104)

= H(PG|XK∪L) +H(PG|XK′∪L)
−H(PG|XL) (105)

= rfε(G,K ′) + rfε(G,K)
− rfε(G,K ∪K ′), (106)
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where (104) follows from the encoding condition in
(27), and (105) follows from the message independence
in (26). Obviously, given r being positive, by (106),
we have fε(G,K ′) + fε(G,K) = fε(G,K ∪K ′).

Now that we have shown that fε(G,K) satisfies (90)-(95),
we use this result to show that f(G,K) satisfies corresponding
six axioms (30)-(34) and (36) in the following.

1) For Axiom (30), if ((PG ∪ PG′) \ (PG ∩ PG′)) ⊆ TK ,
we have

f(G,K) = lim inf
ε→0

fε(G,K)

= lim inf
ε→0

fε(G′,K) = f(G′,K),

where the second equality follows from (90).
2) For Axiom (31), due to (91), we have

f(∅,K) = lim inf
ε→0

fε(∅,K) = 0,

f(G, ∅) = lim inf
ε→0

fε(G, ∅) = 0.

3) For Axiom (32), due to (92), we have

f(G,K) = lim inf
ε→0

fε(G,K) ≤
∑

J:J∈PG,J∈TK

CJ .

4) For Axiom (33), consider any G ⊆ G′ ⊆ [m], K ⊆
K ′ ⊆ [n]. By (93), we have

0 ≤ lim inf
ε→0

(fε(G′,K ′)− fε(G,K))

= lim inf
ε→0

fε(G′,K ′)− lim sup
ε→0

f(G,K)

≤ lim inf
ε→0

fε(G′,K ′)− lim inf
ε→0

f(G,K)

= f(G′,K ′)− f(G,K).

5) For Axiom (34), consider any G,G′ ⊆ [m], K,K ′ ⊆
[n]. By (94), we have

0 ≤ lim inf
ε→0

(fε(G′,K ′) + fε(G,K)

− fε(G ∪G′,K ∩K ′)− fε(G ∩G′,K ∪K ′))

= lim inf
ε→0

fε(G′,K ′) + lim inf
ε→0

fε(G,K)

− lim sup
ε→0

f(G ∪G′,K ∩K ′)

− lim sup
ε→0

f(G ∩G′,K ∪K ′)

≤ lim inf
ε→0

fε(G′,K ′) + lim inf
ε→0

fε(G,K)

− lim inf
ε→0

f(G ∪G′,K ∩K ′)

− lim inf
ε→0

f(G ∩G′,K ∪K ′)

= f(G′,K ′) + f(G,K)− f(G ∪G′,K ∩K ′)

− f(G ∩G′,K ∪K ′).

6) For Axiom (36), consider any G ⊆ [m], K,K ′ ⊆ [n]
such that K ∩K ′ = ∅ and PG ⊆ (N \TK,K′). By (95),
we have

f(G,K) + f(G,K ′) = lim inf
ε→0

(fε(G,K) + fε(G,K ′))

= lim inf
ε→0

fε(G,K ∪K ′)

= f(G,K ∪K ′).

Finally for the last remaining axiom, Axiom (35), we use an
approach similar to the one used in the inequality leading up
to (49). Consider any � > 0 and i ∈ [n]. We rearrange (40) as

ti ≤
H(YN |XAi)−H(YN |XAi∪{i})

1− δ(�) . (107)

We have

rfε([m], {i}) = H(YN |X{i}c)−H(YN |X[n]) (108)

= I(Xi;YN |XAi∪Bi)
= H(Xi|XAi∪Bi)−H(Xi|YN ,XAi∪Bi)
≤ H(Xi)
= ti (109)

≤
H(YN |XAi)−H(YN |XAi∪{i})

1− δ(�) (110)

=
rfε([m], Bi ∪ {i})− rfε([m], Bi)

1− δ(�) (111)

where (108) follows from the encoding condition in (27), (109)
follows from the fact that the messages are uniformly distrib-
uted as specified in (26), (110) follows from (107), and (111)
follows from the definition of fε(G,K). Dividing both sides of
(111) by r and then taking the limit infimum as � approaches
zero, we have

f([m], {i}) ≤ lim inf
ε→0

fε([m], Bi ∪ {i})− fε([m], Bi)
1− δ(�)

= lim inf
ε→0

(fε([m], Bi∪{i})− fε([m], Bi))

= lim inf
ε→0

fε([m], Bi∪{i})−lim sup
ε→0

fε([m], Bi)

≤ lim inf
ε→0

fε([m], Bi∪{i})−lim inf
ε→0

fε([m], Bi)

= f([m], Bi∪{i})− f([m], Bi). (112)

On the other hand, by Axiom (34) we have

f([m], {i}) ≥ f([m], Bi ∪ {i})− f([m], Bi). (113)

Combining (112) and (113) leads to Axiom (35).
This concludes the proof of Theorem 3.

APPENDIX E
FUNCTIONAL DEPENDENCE GRAPH AND fd-SEPARATION

FOR DISTRIBUTED INDEX CODING

We review the functional dependence graph (FDG), which
was first introduced in [24] and then further developed in [25].
We first restate the general definition of FDG and then
specialize it to the distributed index coding FDG based on
the distributed index coding problem setup.

Within this section, we use G = (V , E) to denote a
directed graph with vertex set V = {V1, V2, · · · } and directed
edge set E = {e1, e2, · · · }. We use tail(e) and head(e) to
denote the tail and the head of the directed edge e, ∀e ∈ E ,
respectively. For any Vj , Vk ∈ V , j < k, we say that
vertices Vj , Vk ∈ V are connected if there exist vertices in
V , Vj , Vj+1, . . . , Vk, and edges in E , ej , . . . , ek−1, such that
for any i ∈ [j : k − 1], we have either tail(ei) = Vi,
head(ei) = Vi+1 or tail(ei) = Vi+1, head(ei) = Vi. We
call such vertex sequence Vj , Vj+1, . . . , Vk a path between
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Fig. 3. The distributed index coding FDG for the 4-message problem: (1|−), (2|4), (3|2), (4|3), with all 24−1 = 15 servers. For simplicity, only four output
variables, Y{{1},{1,2},{1,2,3},{1,2,3,4}} , and their corresponding links are shown. To avoid clutter, whenever there exist directed edges in both directions
between any two vertices, we simply draw an edge with arrows at both ends between the vertices, instead of drawing two separate directed edges. Note that
the edges defined in item 2 of Definition 13 are shown as blue, while all the other edges defined in items 1 and 3 are shown in black.

Vj and Vk. Correspondingly, we say that Vj and Vk are
disconnected if such intermediate vertices and edges do not
exist (i.e., there is no path between Vj and Vk). Note that we
ignore the direction of the edges when determining whether
two vertices are connected or not.

Definition 12 (Functional dependence graph): Let V =
{V1, V2, . . . } be a set of random variables. A directed graph
G = (V , E) is called a functional dependence graph (FDG) for
V if and only if

H(Vi|Vj : (Vj , Vi) ∈ E) = 0, ∀Vi ∈ V . (114)

Definition 13 (Distributed index coding FDG): For a given
distributed index coding problem, its distributed index cod-
ing FDG is a directed graph G = (V , E) defined as
follows.

• The set of vertices V = X[n] ∪YN .
• For any V, V ′ ∈ V , (V, V ′) ∈ E if and only if it satisfies

one of the following conditions:

1) V = Xi, V
′ = YJ , J ∈ N, i ∈ J , i.e., (V, V ′)

denotes message availability at server J ;
2) V = Xi, V

′ = Xj , j ∈ [n], i ∈ Aj , i.e., (V, V ′)
denotes side information availability at receiver j;

3) V = YJ , V
′ = Xi, J ∈ N, i ∈ [n], i.e., (V, V ′)

denotes a broadcast link from server J to
receiver i;

Note that the encoding conditionsH(YJ |XJ ) = 0 are captured
in the distributed index coding FDG due to the existence of
edges as defined in item 1 above. The decoding conditions
H(Xi|YN ,XAi) = 0 are captured due to the existence of
edges as defined in items 2 and 3.9 Hence, it can be verified
that for any distributed index coding FDG G = (V , E) we have

H(Vi|Vj : (Vj , Vi) ∈ E) = 0, ∀Vi ∈ V .

9Note that for the distributed index coding FDG, we assume zero-error
decoding conditions at receivers for simplicity. However, as the fd-separation
and Proposition 6 (to be defined shortly) depend only on the message
independence and the encoding conditions at servers, they hold in the general
case of vanishing decoding error probability.

Therefore, the distributed index coding FDG defined in Defi-
nition 13 is indeed an FDG satisfying Definition 12.

Example 18: See Figure 3 for the distributed index coding
FDG for the problem: (1|−), (2|4), (3|2), (4|3).

Now we review the fd-separation criterion, also from [24],
[25], which leads to the conditional message independence
utilized in Axiom (36) of Theorem 3 in Section IV. Similar to
the distributed index coding FDG, the fd-separation presented
here has also been specialized to the distributed index coding
scenario.

Definition 14 (Ancestral graph): Consider the distributed
index coding FDG G = (V , E) of a given distributed index
coding problem. For any subset A ⊆ V , let An(A) be the set
of all vertices in V \A such that for every vertex V ∈ An(A),
there is a directed path from V to some vertex V ′ in A
in the subgraph Ḡ = G \ {e ∈ E : ∃i ∈ [n], head(e) =
Xi}. The ancestral graph with respect to A, denoted by
GAn(A), is a vertex-induced subgraph of G consisting of
vertices (A ∪ An(A)) and edges e ∈ E such that head(e),
tail(e) ∈ A ∪An(A).

Definition 15 (fd-separation): Let G = (V , E) be the dis-
tributed index coding FDG of a given distributed index coding
problem, and let U ,W ,Z be three nonempty disjoint subsets
of V . Set U fd-separates sets W and Z if every vertex in W
is disconnected from every vertex in Z in what remains of
GAn(U∪W∪Z) after removing all edges outgoing from vertices
in U .

Example 19: Recall the 4-message problem whose distrib-
uted index coding FDG is shown in Figure 3. Set U =
{X{1},Y{{1,2},{1,3},{1,4}}},W = {X{2}},Z = {X{3,4}}.
It can be verified that U fd-separates W and Z , as illustrated
by Figure 4.

It can be verified that once the subset of vertices U
fd-separates Z and W in the distributed index coding
FDG for any distributed index coding problem, then it also
fd-separates Z and W in the corresponding network FDG
[25, Definition 11]. Therefore, according to Lemma 4 in [25],
we conclude that the random variables denoted by Z and
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Fig. 4. The ancestral graph GAn(U∪W∪Z) is shown on the left. And the remaining of GAn(U∪W∪Z) after removing all edges outgoing from vertices in
U is shown on the right, where X2 becomes disconnected from both X3 and X4.

W are conditionally independent given the random variables
denoted by U , i.e.,

I(Z;W|U) = 0, if U fd-separates Z and W
in the distributed index coding FDG. (115)

Now we can state the following proposition.
Proposition 6: For any distributed index coding problem

and two disjoint nonempty subsets K,K ′ ⊂ [n], set L =
[n] \ (K ∪K ′). Then, we have

I(XK ;XK′ |XL,YP ) = 0, (116)

for any subset of servers P ⊆ (N \ TK,K′).
Proof: Set U = XL ∪YP , Z = XK , W = XK′ . Since

P ⊆ N \TK,K′ = (TK,K′ ∪TK′,K ∪TK,K′), according to the
touch structure in Definition 1, we know that in the ancestral
graph GAn(U∪W∪Z), for any Xi ∈ Z, Xj ∈ W , vertices Xi

and Xj are either disconnected, or connected with at least one
vertex from XL ⊆ U in the path between them.

After removing all edges outgoing from vertices in
U , any connected vertices Xi ∈ Z and Xj ∈ W
become disconnected. Hence, we can conclude that the
vertex set U fd-separates Z and W in the distributed
index coding FDG. Therefore, from (115), we conclude that
I(XK ;XK′ |XL,YP ) = I(Z;W|U) = 0.

APPENDIX F
PROOF OF PROPOSITION 2

For easier reference, we repeat (50) here for a given problem
(i|Ai), i ∈ [n] with peripheral set U and an augmentation
group V = (V1, · · · , Vk),

∑
i∈[n]

Ri ≤
∑
J∈N

CJ +
∑
�∈[k]

∑
J∈T�

CJ , (117)

where T� = TV�,(
�

j∈[�+1:k] Vj)∪W and W = [n] \ U \
(
⋃

j∈[k] Vj). Note that [k + 1 : k] simply means ∅.
In the following, we prove the proposition by showing that

(117) is implied by the rate constraint inequality (29) as well
as the Axioms (30)-(36) of Theorem 3 with a specific server
grouping PV = {TV1 , TV2 , · · · , TVk

, T(
�

j∈[k] Vj)c}.
For any i ∈ [n] and any B ⊆ Bi, according to (29) as well

as Axiom (34), we have

Ri ≤ f([m], Bi ∪ {i})− f([m], Bi)
≤ f([m], B ∪ {i})− f([m], B),

∀B ⊆ Bi, i ∈ [n]. (118)

Consider any two disjoint sets L,K ⊆ [n]. If L is an
augmentation set of K , then by Definition 3, there exists
an ordering {i1, i2, · · · , i|L|} of the elements in L such that
Aij ⊆ {i1, · · · , ij−1} ∪K, j ∈ [|L|], which indicates that

({i1, · · · , ij−1} ∪K)c ⊆ Bij , ∀j ∈ [|L|]. (119)

Hence, according to (118) and (119), we have
∑
i∈L

Ri =
∑

j∈[|L|]
Rij

≤ f([m],Kc)− f([m],Kc \ {i1})
+ f([m],Kc \ {i1})− f([m],Kc \ {i1} \ {i2})
+ f([m],Kc \ {i1} \ {i2})
− f([m],Kc \ {i1} \ {i2} \ {i3}) + · · ·
+ f([m],Kc \ {i1} \ · · · \ {i|L|−1})
− f([m],Kc \ L)

= f([m],Kc)− f([m],Kc \ L).

By Definitions 4 and 5, U is an augmentation set of ∅, and
Vj for any j ∈ [k] is an augmentation set of V c

j , and W is an
augmentation set of W c. Therefore, we have

∑
i∈U

Ri ≤ f([m], ∅c)− f([m], ∅c \ U)

= f([m], [n])− f([m], [n] \ U), (120)

and ∑
i∈Vj

Ri ≤ f([m], (V c
j )c)− f([m], (V c

j )c \ Vj)

= f([m], Vj), ∀j ∈ [k], (121)

and ∑
i∈W

Ri ≤ f([m], (W c)c)− f([m], (W c)c \W )

= f([m],W ). (122)

As U, V1, · · · , Vk,W are disjoint to each other and [n] =
U ∪ (

⋃
j∈[k] Vj) ∪W , combining (120) and (122), as well as

(121) for every j ∈ [k], we have
∑
i∈[n]

Ri =
∑
i∈U

Ri +
∑
j∈[k]

∑
i∈Vj

Ri +
∑
i∈W

Ri

≤ f([m], [n])− f([m], [n] \ U)

+
∑
j∈[k]

f([m], Vj) + f([m],W )
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≤ f([m], [n]) +
∑
j∈[k]

f({j}, Vj)

+ f([m],W )− f([m], (
⋃

j∈[k]

Vj) ∪W ),

where the last inequality is due to Axiom (30) of Theorem 3.
According to Axiom (32) of Theorem 3, we have

f([m], [n]) +
∑
�∈[k]

f({�}, (
⋃

j∈[�+1:k]

Vj) ∪W )

≤
∑
J∈N

CJ +
∑
�∈[k]

∑
J∈T�

CJ .

Therefore, to complete the proof of the proposition, it suffices
to show that

f([m], [n]) +
∑
�∈[k]

f({�}, (
⋃

j∈[�+1:k]

Vj) ∪W ) ≥

f([m], [n]) +
∑
j∈[k]

f({j}, Vj)

+ f([m],W )− f([m], (
⋃

j∈[k]

Vj) ∪W ) (123)

is implied by the rate constraint inequality (29) as well as
Axioms (30)-(36) of Theorem 3 with PV from Definition 6.

By Axioms (34) and (33), for any � ∈ [k], we have

f([m], (
⋃

j∈[�:k]

Vj) ∪W ) + f({�}, (
⋃

j∈[�+1:k]

Vj) ∪W )

≥ f([m], (
⋃

j∈[�+1:k]

Vj) ∪W ) + f({�}, V�). (124)

Summing both sides of (124) for every � ∈ [k], we have
∑
�∈[k]

f([m], (
⋃

j∈[�:k]

Vj) ∪W )

+
∑
�∈[k]

f({�}, (
⋃

j∈[�+1:k]

Vj) ∪W )

≥
∑
�∈[k]

f([m], (
⋃

j∈[�+1:k]

Vj) ∪W ) +
∑
�∈[k]

f({�}, V�)

=
∑

�∈[2:k+1]

f([m], (
⋃

j∈[�:k]

Vj) ∪W )

+
∑
�∈[k]

f({�}, V�). (125)

Note that
∑
�∈[1]

f([m], (
⋃

j∈[�:k]

Vj) ∪W ) = f([m], (
⋃

j∈[k]

Vj) ∪W )

and
∑

�∈[k+1:k+1]

f([m], (
⋃

j∈[�:k]

Vj) ∪W ) = f([m],W ).

Using the above relations, we have

f([m], (
⋃

j∈[k]

Vj) ∪W ) +
∑
�∈[k]

f({�}, (
⋃

j∈[�+1:k]

Vj) ∪W )

=
∑
�∈[k]

f([m], (
⋃

j∈[�:k]

Vj) ∪W )

−
∑

�∈[2:k]

f([m], (
⋃

j∈[�:k]

Vj) ∪W )

+
∑
�∈[k]

f({�}, (
⋃

j∈[�+1:k]

Vj) ∪W )

≥
∑

�∈[2:k+1]

f([m], (
⋃

j∈[�:k]

Vj) ∪W )

−
∑

�∈[2:k]

f([m], (
⋃

j∈[�:k]

Vj) ∪W ) +
∑
�∈[k]

f({�}, V�)

= f([m],W ) +
∑
�∈[k]

f({�}, V�),

where the inequality follows from (125). This completes the
proof of (123) being implied by the rate constraint inequality
(29) as well as Axioms (30)-(36) of Theorem 3 with PV, and
thus completes the proof of this proposition.

APPENDIX G
PROOF OF COROLLARY 4

The goal is to show that Axiom (30) in Theorem 3 simplifies
to Axiom (56) in Corollary 4. For easier reference, we repeat
Axiom (30), with Pt = {TL1, TL2 , . . . , TLm}, as follows.

f(G,K) = f(G′,K),
if ((TLG ∪ TLG′ ) \ (TLG ∩ TLG′ )) ⊆ TK .

We also repeat Axiom (56) as follows.

f(G,K) = f(G′,K), if K ⊆ (LG ∩ LG′).

For brevity, set L = LG, L′ = LG′ , and also set T =
(TL ∪ TL′) \ (TL ∩ TL′) = ((TLG ∪ TLG′ ) \ (TLG ∩ TLG′ )).
For any K ⊆ [n], G,G′ ⊆ [m], we are going to show that
K ⊆ (L ∩ L′) is the sufficient and necessary condition for
T ⊆ TK . If G = G′, then both (30) and (56) becomes trivial.
Hence we only consider the case when G 
= G′, and since
L1, · · · , Lm are disjoint to each other, we have L 
= L′.

First, to show the sufficiency, we assume that K ⊆ (L∩L′).
Consider any J ∈ T , we know that J touches either L or L′,
but not both. As K ⊆ (L ∩ L′), we know that J ∩ K = ∅,
which means that J ∈ TK . Therefore, we have T ⊆ TK ,
which proves the sufficient condition.

Second, to show the necessity, we assume that T ⊆ TK .
Since L 
= L′, without loss of generality, assume there exists
some j1 ∈ L \ L′. Now we show that K ⊆ (L ∩ L′) by
contradiction.

Assume that K \L′ 
= ∅, then there exists some j2 ∈ K \L′.
Note that j1, j2 may be the same index. Now set J = {j1} ∪
{j2} ∈ N . Then we have

J ∩ L 
= ∅, J ∩ L′ = ∅, J ∩K 
= ∅. (126)

Hence, we have J ∈ T (since J ∈ (TL ∪ TL′), J /∈ (TL ∩
TL′)), and also J /∈ TK . This contradicts with the assumption
that T ⊆ TK . And therefore, we must have K \ L′ = ∅,
i.e., K ⊆ L′.

Now assume that K \ L 
= ∅, then there exists some j3 ∈
K \L. Since j3 ∈ K \L and K ⊆ L′, for {j3} ∈ N , we have

{j3} ∩ L = ∅, {j3} ∩ L′ 
= ∅, {j3} ∩K 
= ∅. (127)
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Hence, we have {j3} ∈ T (since {j3} ∈ (TL ∪ TL′), {j3} /∈
(TL ∩ TL′)), and also {j3} /∈ TK . This contradicts with
the assumption that T ⊆ TK . And therefore, we must have
K \ L = ∅, i.e., K ⊆ L.

Now we have both K ⊆ L′ and K ⊆ L, which means that
K ⊆ (L ∩L′) and proves the necessary condition. Therefore,
Axioms (30) and (56) are the same under the touch grouping.
This completes the proof.

APPENDIX H
PROOF OF PROPOSITION 3

For a given distributed index coding problem, consider
two valid server groupings Q = {Q1, · · · , Q�} and P =
{P1, · · · , Pm} such that P is a refinement of Q. For any
E ⊆ [�], let QE =

⋃
i∈E Qi, and for any G ⊆ [m], let

PG =
⋃

i∈G Pi. Denote the outer bound on the capacity region
given by the grouping PM outer bound with Q and P as RQ
and RP , respectively.

According to Definition 10, for any i ∈ [�], there exists
some set G ⊆ [m] such that PG = Qi. Define the mapping
function G that maps any set E ⊆ [�] to a corresponding set
G(E) ⊆ [m] as follows.

G(E) =
⋃
i∈E

⋃
G⊆[m]:
PG=Qi

G. (128)

Then for any E ⊆ [�], we have

PG(E) =
⋃
i∈E

⋃
G⊆[m]:
PG=Qi

PG =
⋃
i∈E

Qi = QE . (129)

It can also be verified that the mapping function G has
following properties.

G(∅) = ∅. (130)

G(E) ⊆ G(E′), ∀E ⊆ E′ ⊆ [�]. (131)

G(E ∪ E′) = G(E) ∪G(E′), ∀E,E′ ⊆ [�]. (132)

G(E ∩ E′) ⊆ G(E) ∩G(E′), ∀E,E′ ⊆ [�]. (133)

Now assume that some rate tuple R = (Ri, i ∈ [n]) is
in RP . Then there exists f(G,K), G ⊆ [m],K ⊆ [n] such
that R and f(G,K) satisfy Axioms (30)-(36), as well as (29),
with server grouping P . Construct fQ(E,K) = f(G(E),K),
E ⊆ [�],K ⊆ [n]. We now show that the rate tuple R is
also in RQ by showing that R and fQ(E,K) satisfy Axioms
(30)-(36), as well as (29) with server grouping Q.

For Axiom (30), consider any E,E′ ⊆ [�],K ⊆ [n] such
that (QE ∪QE′) \ (QE ∩QE′) ⊆ TK , we have

(PG(E) ∪ PG(E′)) \ (PG(E) ∩ PG(E′)) =
(QE ∪QE′) \ (QE ∩QE′) ⊆ TK ,

where the first equality is due to (129). As f(G,K) satisfies
Axiom (30) with server grouping P , we have f(G(E),K) =
f(G(E′),K). Therefore, by the construction of fQ(E,K),
we have fQ(E,K) = f(G(E),K) = f(G(E′),K) =
fQ(E′,K).

For Axiom (31), it is clear that for any E ⊆ [�],K ⊆ [n],
due to (130) as well as f(G,K) satisfying Axiom (31),

we have fQ(∅,K) = f(G(∅),K) = f(∅,K) = 0 and
fQ(E, ∅) = f(G(E), ∅) = 0.

For Axiom (32), for any E ⊆ [�],K ⊆ [n], due to (129) as
well as f(G,K) satisfying Axiom (32), we have

fQ(E,K) = f(G(E),K) ≤
∑

J:J∈PG(E),J∈TK

CJ

=
∑

J:J∈QE ,J∈TK

CJ .

For Axiom (33), for any E ⊆ E′ ⊆ [�],K ⊆ K ′ ⊆ [n],
we have

fQ(E,K) = f(G(E),K) ≤ f(G(E′),K ′) = fQ(E′,K ′),

where the inequality is due to (131) and f(G,K) satisfying
Axiom (33).

For Axiom (34), for any E,E′ ⊆ [�],K,K ′ ⊆ [n], we have

fQ(E ∪ E′,K ∩K ′) + fQ(E ∩ E′,K ∪K ′)
= f(G(E ∪E′),K ∩K ′) + f(G(E ∩ E′),K ∪K ′)
≤ f(G(E) ∪G(E′),K ∩K ′)+f(G(E) ∩G(E′),K ∪K ′)
≤ f(G(E),K) + f(G(E′),K ′)
= fQ(E,K) + fQ(E′,K ′),

where the first inequality is due to (132) and (133) and
f(G,K) satisfying Axiom (33), and the second inequality is
due to f(G,K) satisfying Axiom (34).

For Axiom (35), for any K ⊆ [n], according to (129),
we have

(P[m] ∪ PG([�])) \ (P[m] ∩ PG([�]))
= (P[m] ∪Q[�]) \ (P[m] ∩Q[�])
= (N ∪N) \ (N ∩N) = ∅ ⊆ TK .

Therefore, for any i ∈ [n], as f(G,K) satisfies Axioms (30)
and (35), we have

fQ([�], Bi ∪ {i})− fQ([�], Bi)
= f(G([�]), Bi ∪ {i})− f(G([�]), Bi)
= f([m], Bi ∪ {i})− f([m], Bi) (134)

= f([m], {i}) = f(G([�]), {i}) = fQ([�], {i}).
For Axiom (36), for any E ⊆ [�],K,K ′ ⊆ [n] such that

QE ⊆ (N \ TK,K′), according to (129), we have PG(E) =
QE ⊆ (N \ TK,K′). As f(G,K) satisfies Axiom (36) with
server grouping P , we have

fQ(E,K) + fQ(E,K ′) = f(G(E),K) + f(G(E),K ′)
= f(G(E),K ∪K ′)
= fQ(E,K ∪K ′).

Finally, given (134) and that f(G,K) and R jointly
satisfy (29), for any i ∈ [n], we have

fQ([�], Bi ∪ {i})− fQ([�], Bi)
= f([m], Bi ∪ {i})− f([m], Bi) ≥ Ri,

which finishes the proof that fQ(E,K) and R jointly
satisfy (29).

So far we have shown that for any R in rate region RP ,
it must be also in RQ. Therefore, RP ⊆ RQ.
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TABLE IV

LIST OF ALL 218 NON-ISOMORPHIC INDEX CODING PROBLEMS WITH n = 4 MESSAGES

APPENDIX I
PROOF OF PROPOSITION 5

We show that R∗ ⊆ RfL as follows.
Consider any rate tuple R ∈ R∗. Then, there exists some

set function g(K),K ⊆ [n] such that g(K) satisfies Axioms
(72)-(76) and R and g(K) jointly satisfy (71). Construct
fL(S), S ⊆ L ⊆ [n] as fL(S) = g(S).

It can be verified with relative ease that fL(S) satisfies all
the axioms for proposition 4 (Axioms (78)-(81)). So it remains
to show that R and fL(S) jointly satisfy (77) as follows.

For any L ⊆ [n] and i ∈ L, we have

Ri ≤ g(Bi ∪ {i})− g(Bi)
≤ g((Bi ∪ {i}) ∩ L)− g(Bi ∩ L)
= fL((Bi ∪ {i}) ∩ L)− fL(Bi ∩ L).

where the first inequality is due to (71), and the second
inequality is due to the fact that Bi ∪ ((Bi ∪ {i}) ∩ L) =
Bi ∪ {i}, Bi ∩ ((Bi ∪ {i}) ∩ L) = Bi ∩ L and that g(K)
satisfies the submodularity axiom, Axiom (75).

Therefore, we can conclude that R ∈ RfL and R∗ ⊆ RfL .

APPENDIX J
LIST OF ALL NON-ISOMORPHIC INDEX CODING

PROBLEMS WITH n = 4 MESSAGES

See Table IV.
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