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Abstract— A low-complexity coding scheme is developed to
achieve the rate region of maximum likelihood decoding for
interference channels. As in the classical rate-splitting multiple
access scheme by Grant, Urbanke, and Whiting, the proposed
coding scheme uses superposition of multiple codewords with
successive cancellation decoding, which can be implemented
using standard point-to-point encoders and decoders. Unlike
rate-splitting multiple access, which is not rate-optimal for
multiple receivers, the proposed coding scheme transmits code-
words over multiple blocks in a staggered manner and recovers
them successively over sliding decoding windows, achieving the
single-stream optimal rate region as well as the more general
Han–Kobayashi inner bound for the two-user interference
channel. The feasibility of this scheme in practice is verified
by implementing it using commercial channel codes over the
two-user Gaussian interference channel.

Index Terms— Coded modulation, coding technique, interfer-
ence management, simultaneous decoding.

I. INTRODUCTION

FOR high data rates and massive connectivity, next-
generation cellular networks are expected to deploy many

small base stations. While such dense deployment provides
the benefit of bringing radio closer to end users, it also
increases the amount of interference from neighboring cells.
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Consequently, efficient and effective management of interfer-
ence is expected to become one of the main challenges for
high-spectral-efficiency, low-power, broad-coverage wireless
communications.

Over the past few decades, several techniques at different
protocol layers [1]–[3] have been proposed to mitigate adverse
effects of interference in wireless networks. One important
conceptual technique at the physical layer is simultaneous
decoding [4, Section 6.2], [5]. In this decoding method, each
receiver attempts to recover both the intended and a subset
of the interfering codewords at the same time. When the
interference is strong [6], [7] and weak [8]–[11], simultaneous
decoding of random code ensembles achieves the capacity
of the two-user interference channel. In fact, for any given
random code ensemble, simultaneous decoding achieves the
same rates achievable by the optimal maximum likelihood
decoding [10], [12], [13]. The celebrated Han–Kobayashi
coding scheme [14] also relies on simultaneous decoding as
a crucial component. As a main drawback, however, each
receiver in simultaneous decoding (or maximum likelihood
decoding) has to employ some form of multiuser sequence
detection, which usually has high computational complexity.
This issue has been tackled recently by a few approaches based
on emerging spatially coupled and polar codes [15], [16], but
these solutions involve very long block lengths.

For this reason, most practical communication systems use
conventional single-user point-to-point decoding. The sim-
plest method is treating interference as noise, in which only
statistical properties (such as the distribution and power),
rather than the actual codebook information, of the interfering
signals, are used. In successive cancellation decoding, similar
single-user decoding is performed in steps, first recovering
interfering codewords and then incorporating them as part
of the channel output for decoding of desired codewords.
Successive cancellation decoding is particularly well suited
when the messages are split into multiple parts by rate
splitting, encoded into separate codewords, and transmitted
via superposition coding. In particular, when there is only
one receiver (i.e., for a multiple access channel), this rate-
splitting coding scheme with successive cancellation decoding
was proposed by Rimoldi and Urbanke [17] for the Gaussian
case and Grant et al. [18] for the discrete case, and achieves the
optimal rate region of the polymatroidal shape (the pentagon
for two senders). When there are two or more receivers—as
in the two-user interference channel or the compound multiple
access channel—the rate-splitting multiple access scheme fails
to achieve the optimal rate region as demonstrated earlier
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Fig. 1. The interference channel with two sender–receiver pairs.

in [19] for Gaussian codes and in Section III-B of this paper
(and [20]) for general codes.

A natural question is whether single-user point-to-point
coding techniques, which could achieve capacity for multi-
ple access and single-antenna Gaussian broadcast channels,
are fundamentally deficient for the interference channel, and
high-complexity simultaneous decoding would be critical to
achieve the capacity in general. In this paper, we develop
a new coding scheme, called sliding-window superposition
coding, that overcomes the limitations of single-user decoding
through a new diagonal superposition structure. The main
ingredients of the scheme are block Markov coding, sliding-
window decoding (both commonly used for multihop relay-
ing and feedback communication), superposition coding, and
successive cancellation decoding (crucial for low-complexity
implementation using standard point-to-point codes). Each
message is encoded into a single long codeword that are
transmitted diagonally over multiple blocks and multiple sig-
nal layers, which helps avoid the performance bottleneck
for the aforementioned rate-splitting multiple access scheme.
Receivers recover the desired and interfering codewords over
a decoding window spanning multiple blocks. Successive can-
cellation decoding is performed within each decoding window
as well as across a sequence of decoding windows for streams
of messages. When the number and distribution of signal
layers are properly chosen, the sliding-window superposition
coding scheme can achieve every rate pair in the rate region
of maximum likelihood decoding for the two-user interference
channel with single streams, providing a constructive answer
to our earlier question. We develop a more complete theory
behind the number and distribution of signal layers and the
choice of decoding orders, which leads to an extension of this
coding scheme that achieves the entire Han–Kobayashi inner
bound.

For practical communication systems, the conceptual
sliding-window superposition coding scheme can be readily
adapted to a coded modulation scheme using binary codes
and common signal constellations. We compare this sliding-
window coded modulation scheme with two well-known coded
modulation schemes, multi-level coding [21], [22] and bit-
interleaved coded modulation [23], [24]. We implement the
sliding-window coded modulation scheme for the two-user
Gaussian channel using the 4G LTE turbo code and demon-
strate its performance improvement over treating interference
as noise. Following earlier conference versions [20], [25]
of this paper, several practical implementations of sliding-
window superposition coding have been investigated [26]–[28]
and proposed to the 5G standards [29]–[34].

The rest of the paper is organized as follows. We first define
the problem and the relevant rate regions in Section II. Then,
we explain the rate-splitting scheme and demonstrate its fun-
damental deficiency for the interference channel in Section III.
We introduce the new sliding-window superposition coding in
Section IV, first by developing a simple scheme that achieves
the corner points of simultaneous decoding region, and then
extending it to achieve every point in the region. In Section V,
we present a more complete theory of the sliding-window
superposition coding scheme with a discussion on the number
of superposition layers and alternative decoding orders. With
further extensions and augmentations, we develop a scheme
that achieves the Han–Kobayashi inner bound [14] for the
two-user interference channel with point-to-point encoders and
decoders in Section VI. We devote Section VII to sliding-
window coded modulation and its application in a practical
communication setting. We offer a couple of concluding
remarks in Section VIII.

Throughout the paper, we closely follow the notation in [4].
In particular, for X ∼ p(x) and ε ∈ (0, 1), we define the set
of ε-typical n-sequences xn (or the typical set in short) [35]
as

T (n)
ε (X) =

{
xn : |#{i : xi = x}/n − p(x)| ≤ εp(x)

for all x ∈ X
}
.

We use Xn
k to denote the vector (Xk1, Xk2, . . . , Xkn). For

n = 1, 2, . . . , [n] = {1, 2, . . . , n} and for a ≥ 0, [2a] =
{1, 2, . . . , 2�a�}, where �a� is the smallest integer greater
than or equal to a. The probability of an event A is denoted
by P(A).

II. TWO-USER INTERFERENCE CHANNELS

Consider the communication system model depicted
in Fig. 1, whereby senders 1 and 2 wish to communicate
independent messages M1 and M2 to their respective receivers
over a shared channel p(y1, y2|x, w). Here X and W are
channel inputs from senders 1 and 2, respectively, and Y1 and
Y2 are channel outputs at receivers 1 and 2, respectively. In net-
work information theory, this model is commonly referred to
as the two-user interference channel.

The Gaussian interference channel in Fig. 2 is an important
special case with channel outputs

Y1 = g11X + g12W + N1,

Y2 = g21X + g22W + N2, (1)

where gjk denotes the channel gain coefficient from sender
k to receiver j, and N1 and N2 are independent N(0, 1)
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Fig. 2. The two-user Gaussian interference channel.

noise components. Under the average power constraint P on
each input X and W , we denote the received signal-to-noise
ratios (SNRs) as S1 = g2

11 P and S2 = g2
22 P , and the

received interference-to-noise ratios (INRs) as I1 = g2
12 P and

I2 = g2
21 P .

A (2nR1 , 2nR2 , n) code Cn for the (two-user) interference
channel consists of

• two message sets [2nR1 ] := {1, . . . , 2�nR1�} and [2nR2 ],
• two encoders, where encoder 1 assigns a code-

word xn(m1) to each message m1 ∈ [2nR1 ] and
encoder 2 assigns a codeword wn(m2) to each message
m2 ∈ [2nR2 ], and

• two decoders, where decoder 1 assigns an estimate
m̂1 or an error message e to each received sequence yn

1

and decoder 2 assigns an estimate m̂2 or an error message
e to each received sequence yn

2 .

The performance of a given code Cn for the interference
channel is measured by its average probability of error

P (n)
e (Cn) = P

{
(M̂1, M̂2) �= (M1, M2)

}
,

where the message pair (M1, M2) is uniformly distributed
over [2nR1 ] × [2nR2 ]. A rate pair (R1, R2) is said to be
achievable if there exists a sequence of (2nR1 , 2nR2 , n) codes
(Cn)∞n=1 such that limn→∞ P

(n)
e (Cn) = 0. A set of rate pairs,

typically referred to as a rate region, is said to be achievable
if every rate pair in the interior of the set is achievable. The
capacity region is the closure of the set of achievable rate
pairs (R1, R2), which is the largest achievable rate region and
captures the optimal tradeoff between the two rates of reliable
communication over the interference channel. The capacity
region for the two-user interference channel is not known in
general.

Let p = p(x)p(w) be a given product pmf on X × W .
Suppose that the codewords xn(m1), m1 ∈ [2nR1 ], and
wn(m2), m2 ∈ [2nR2 ], that constitute the codebook are gener-
ated randomly and independently according to

∏n
i=1 pX(xi)

and
∏n

i=1 pW (wi), respectively. We refer to the codebooks
generated in this manner collectively as the (2nR1 , 2nR2 , n; p)
random code ensemble (or the p-distributed random code
ensemble in short).

Fixing the encoders as such, we now consider a few
alternative decoding schemes. Here and henceforth, we assume
p = p(x)p(w) is fixed and write rate regions without p
whenever it is clear from the context.

• Treating interference as noise (IAN). Receiver 1 recovers
M1 by treating the interfering codeword Wn(M2) as
noise generated according to a given (memoryless) distri-
bution p(w). In other words, receiver 1 performs point-to-
point decoding (either a specific decoding technique or a
conceptual scheme) for the channel

p(yn
1 |xn) =

∑
wn

p(wn)p(yn
1 |xn, wn)

=
n∏

i=1

∑
wi

pW (wi)pY1|X,W (y1i|xi, wi)

=
n∏

i=1

pY1|X(y1i|xi).

For example, if joint typicality decoding
[36, Section 7.7] is used, the decoder finds m̂1

such that (xn(m̂1), yn
1 ) ∈ T (n)

ε (X, Y1). Similarly,
receiver 2 can recover M2 by treating Xn as noise. For
the p-distributed random code ensemble, treating noise
as interference achieves

RIAN = R1,IAN ∩ R2,IAN

where R1,IAN and R2,IAN denote the sets of all rate pairs
(R1, R2) such that R1 ≤ I(X ; Y1) and R2 ≤ I(W ; Y2),
respectively; see Fig. 3a.

• Successive cancellation decoding (SCD). Receiver 1
recovers M2 by treating Xn as noise and then recovers
M1 based on Wn(M2) (and Y n

1 ). For example, in joint
typicality decoding, the decoder finds a unique m̂2 such
that (wn(m̂2), yn

1 ) ∈ T (n)
ε (W, Y1) and then a unique

m̂1 such that (xn(m̂1), wn(m̂2), yn
1 ) ∈ T (n)

ε (X, W, Y1).
Receiver 2 operates in a similar manner. For the
p-distributed random code ensemble, successive cancel-
lation decoding achieves

RSCD = R1,SCD ∩ R2,SCD,

where R1,SCD consists of (R1, R2) such that

R2 ≤ I(W ; Y1), R1 ≤ I(X ; Y1|W ),

and similarly R2,SCD consists of (R1, R2) such that

R1 ≤ I(X ; Y2), R2 ≤ I(W ; Y2|X).

See Fig. 3b for an illustration of RSCD.
• Mix and match. Each receiver can choose between treat-

ing interference as noise and successive cancellation
decoding. This mix-and-match achieves

(R1,IAN ∪ R1,SCD) ∩ (R2,IAN ∪ R2,SCD). (2)

The achievable rate region for mixing and matching is
illustrated in Fig. 3c.

• Simultaneous (nonunique) decoding (SND). Receiver 1
recovers both the desired message M1 and the interfering
message M2 simultaneously. It then keeps M1 as the
message estimate and ignores the error in estimating M2.
Receiver 2 operates in a similar manner. For example,
in joint typicality decoding, receiver 1 finds a unique m̂1

such that (xn(m̂1), wn(m2), yn
1 ) ∈ T (n)

ε (X, W, Y1) for
some m2 ∈ [2nR2 ], and receiver 2 finds a unique m̂2
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Fig. 3. Illustration of the MLD, IAN, SCD regions and their comparison.

such that (xn(m1), wn(m̂2), yn
2 ) ∈ T (n)

ε (X, W, Y2) for
some m1 ∈ [2nR1 ]. For the p-distributed random code

ensemble, simultaneous decoding achieves

RSND = R1,SND ∩ R2,SND,

where R1,SND consists of (R1, R2) such that

R1 ≤ I(X ; Y1) (3)

or

R1 ≤ I(X ; Y1|W ),
R1 + R2 ≤ I(X, W ; Y1), (4)

and R2,SND is characterized by index substitution 1 ↔ 2
and variable substitution X ↔ W in (3) and (4), i.e.,

R2 ≤ I(W ; Y2)

or

R2 ≤ I(W ; Y2|X),
R1 + R2 ≤ I(X, W ; Y2).

Note that RSND can be written as

RSND = (R1,IAN ∪ R1,SD) ∩ (R2,IAN ∪ R2,SD)
= (R1,IAN ∩ R2,IAN) ∪ (R1,SD ∩ R2,IAN)
∪ (R1,IAN ∩ R2,SD) ∪ (R1,SD ∩ R2,SD) , (5)

where R1,SD is defined as the set of rate pairs (R1, R2)
such that

R1 ≤ I(X ; Y1|W ),
R2 ≤ I(W ; Y1|X),

R1 + R2 ≤ I(X, W ; Y1), (6)

and R2,SD is defined similarly by making the index
substitution 1 ↔ 2 and variable substitution X ↔ W
in R1,SD.

As illustrated in Fig. 3d, RSND is in general strictly larger
than the mix-and-match region in (2).

It turns out no decoding rule can improve upon RSND.
More precisely, given any codebook {(xn(m1), wn(m2))},
the probability of decoding error is minimized by the max-
imum likelihood decoding (MLD) rule

m̂1 = argmax
m1

∑
m2

n∏
i=1

pY1|X,W (y1i|xi(m1), wi(m2)),

m̂2 = argmax
m2

∑
m1

n∏
i=1

pY2|X,W (y2i|xi(m1), wi(m2)). (7)

The optimal rate region (or the MLD region) R∗(p) for
the p-distributed random code ensembles is the closure of
the set of rate pairs (R1, R2) such that the sequence of
(2nR1 , 2nR2 , n; p) random code ensembles satisfies

lim
n→∞ E[P (n)

e (Cn)] = 0,

where the expectation is with respect to the randomness in
codebook generation. It is established in [13] that SND is
optimal for the p-distributed random code ensembles, i.e.,

R∗ = RSND.
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Fig. 4. Rate-splitting with successive cancellation for receiver 1.

As shown in Fig. 3d, R∗ = RSND is in general strictly
larger than the mix-and-match region in (2), the gain of
which may be attributed to high-complexity multiple sequence
detection. The goal of this paper is to develop a coding scheme
that achieves R∗ using low-complexity point-to-point encoders
and decoders.

III. RATE SPLITTING FOR THE INTERFERENCE CHANNEL

In order to improve upon the mix-and-match scheme in the
previous section at comparable complexity, one can incorpo-
rate the rate-splitting technique by Rimoldi and Urbanke [17]
and Grant et al. [18].

A. Rate-Splitting Multiple Access

Consider the multiple access channel p(y1|x, w) with two
inputs X and W and the common output Y1. It is well-known
that simultaneous decoding of the random code ensemble
generated according to p = p(x)p(w) achieves R1,SD(p)
in (6). In the following, we show how to achieve this region
via rate splitting with point-to-point decoders.

Suppose that the message M1 ∈ [2nR1 ] is split into two
parts (M11, M12) ∈ [2nR11 ] × [2nR12 ] while the message
M2 ∈ [2nR2 ] is not split. The messages m11 and m12 are
encoded into codewords xn

1 and xn
2 , respectively, which are

then symbol-by-symbol mapped to the transmitted sequence
xn, that is, xi(m11, m12) = x(x1i(m11), x2i(m12)), i ∈ [n],
for some function x(x1, x2). The message m2 is mapped to
wn. For decoding, the receiver recovers m̂11, m̂2, and m̂12,
successively, which is denoted as the decoding order

d1 : m̂11 → m̂2 → m̂12.

This rate-splitting scheme [17] with so-called homogeneous
superposition coding [37] and successive cancellation decod-
ing in Fig. 4 can be easily implemented by low-complexity
point-to-point encoders and decoders.

Following the standard analysis for random code ensembles
generated by p′(x1)p′(x2)p′(w), decoding is successful if

R11 < I(X1; Y1),
R2 < I(W ; Y1|X1),

R12 < I(X2; Y1|X1, W ) = I(X ; Y1|X1, W ).

By setting R1 = R11+R12, it follows that the scheme achieves
the rate region RRS(p) consisting of (R1, R2) such that

R1 ≤ I(X1; Y1) + I(X ; Y1|X1, W ),
R2 ≤ I(W ; Y1|X1). (8)

By varying p′(x1)p′(x2) and x(x1, x2), while maintaining
p′(x) =

∑
x1,x2:x(x1,x2)=x p′(x1)p′(x2) = p(x) and p′(w) =

p(w), which we compactly denote by p′  p, the rectangular
region (8) traces the boundary of rate region R1,SD(p). More
precisely, we have the following identity; see Appendix A for
the proof.

Lemma 1 (Layer-Splitting Lemma [18]):

R1,SD(p) =
⋃

p′�p

RRS(p′).

Remark 1: Simultaneous decoding of M̂11, M̂12, and M̂2

cannot achieve rates beyond R1,SD(p) and therefore it does not
improve upon (the union of) successive cancellation decoding
for the multiple access channel.

B. Rate Splitting for the Interference Channel

The main idea of rate splitting for the multiple access chan-
nel is to represent the messages by multiple parts and encode
each into one of the superposition layers. Combined with
successive cancellation decoding, this superposition coding
scheme transforms the multiple access channel into a sequence
of point-to-point channels, over which single-user encoders
and decoders can be used. For the interference channel with
multiple receivers, however, this rate-splitting scheme can
no longer achieve the rate region of simultaneous decoding
(cf. Remark 1). The root cause of this deficiency is not rate
splitting per se, but suboptimal successive cancellation decod-
ing. Indeed, proper rate splitting can achieve rates better than
no splitting when simultaneous decoding is used (cf. Han–
Kobayashi coding).

To understand the limitations of successive cancellation
decoding, we consider the rate-splitting scheme with the same
encoder structure as before and two decoding orders

d1 : m̂11 → m̂2 → m̂12,

d2 : m̂11 → m̂12 → m̂2,

as depicted in Fig. 5. Following the standard analysis, decod-
ing is successful at receiver 1 if

R11 < I(X1; Y1), (9a)

R2 < I(W ; Y1|X1), (9b)

R12 < I(X ; Y1|X1, W ). (9c)
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Fig. 5. Rate-splitting with successive cancellation in the two-user interference channel.

and at receiver 2 if

R11 < I(X1; Y2), (9d)

R12 < I(X ; Y2|X1), (9e)

R2 < I(W ; Y2|X). (9f)

By Fourier–Motzkin elimination, this scheme achieves the rate
region consisting of (R1, R2) such that

R1 ≤ min{I(X1; Y1), I(X1; Y2)}
+ min{I(X ; Y1|X1, W ), I(X ; Y2|X1)}, (10a)

R2 ≤ min{I(W ; Y1|X1), I(W ; Y2|X)}. (10b)

Remark 2 (Min of the Sum vs. Sum of the Min): We note
a common misconception in the literature, reported also in [38]
(see the references therein), that the bounds on R11 and R12

in (9) would simplify to

R1 ≤ min{I(X1; Y1) + I(X ; Y1|X1, W ), I(X ; Y2)}, (11)

which could be sufficient to achieve the MLD region R∗(p)
in Section II. This conclusion is incorrect, since the bound
in (10a) is strictly smaller than (11) in general. In fact, the rate
region in (10), even after taking the union over all p′  p
is strictly smaller than R∗(p). In order to ensure reliable
communication over two different underlying multiple access
channels p(yi|x, w), i = 1, 2, the message parts in the rate-
splitting scheme have to be loaded at the rate of the worse
channel on each superposition layer, which in general incurs
a total rate loss.

It turns out that this deficiency is fundamental and cannot
be overcome by introducing more superposition layers and
different decoding orders (which include treating interference
as noise d1 : m̂11 → m̂12 and d2 : m̂2). To be more
precise, we define the general (p′, s, t, d1, d2) rate-splitting
scheme. The message M1 is split into s independent parts
M11, M12, . . . , M1s with rates R11, R12, . . . , R1s, respec-
tively, and the message M2 is split into t independent parts
M21, M22, . . . , M2t at rates R21, R22, . . . , R2t, respectively.
These messages are encoded by the random code ensemble
generated according to p′ =

(∏s
j=1 p′(xj)

)(∏t
j=1 p′(wj)

)
and the corresponding codewords are superimposed
by symbol-by-symbol mappings x(x1, . . . , xs) and
w(w1, . . . , wt). The receivers use successive cancellation
decoding with decoding orders d1 and d2, where d1 is an
ordering of elements in {m̂11, . . . , m̂1s, m̂21, . . . , m̂2k},
k ≤ t, and d2 is an ordering of elements in

{m̂11, . . . , m̂1l, m̂21, . . . , m̂2t}, l ≤ s. The achievable
rate region of this rate-splitting scheme is denoted by
RRS(p′, s, t, d1, d2). We establish the following statement
in Appendix C.

Theorem 1: There exists an interference channel
p(y1, y2|x, w) and some input pmf p = p(x)p(w) such
that ⋃

p′�p

RRS(p′, s, t, d1, d2) � R∗(p) (12)

for any finite s and t, and decoding orders d1 and d2.
Moreover, strict inclusion holds even after taking union over
all input pmfs p, i.e.,

⋃
p

⋃
p′�p

RRS(p′, s, t, d1, d2) �

(⋃
p

R∗(p)

)
. (13)

Remark 3: It can be easily checked that the first three
regions in the decomposition of R∗ in (5) are achievable by
properly chosen (p′, 2, 1, d1, d2) rate-splitting schemes. The
fourth region R1,SD ∩ R2,SD is the bottleneck in achieving
the entire R∗ with rate splitting and successive cancellation.

IV. SLIDING-WINDOW SUPERPOSITION CODING

In this section, we develop a new coding scheme, termed
sliding-window superposition coding (SWSC), that overcomes
the limitation of rate splitting by encoding the message to
multiple superposition layers across consecutive blocks.

A. Corner Points

We first show how to achieve the rate region in (10b)
and (11), which will be shown to be sufficient to achieve the
corner points of R1,SD ∩ R2,SD.

In SWSC, we consider a stream of messages,
(m1(1), m2(1)), (m1(2), m2(2)), . . . , to be communicated
over multiple blocks. As before, m2(j) is encoded into a
codeword wn to be transmitted in block j. The message
m1(j), which was split and transmitted in two layers X1

and X2 in the previous rate-splitting scheme, is now encoded
into two sequences xn

2 and xn
1 to be transmitted in two

consecutive blocks j and j + 1, respectively; see Table I. The
transmitted sequence xn in block j is the symbol-by-symbol
superposition of xn

1 (m1(j − 1)) and xn
2 (m1(j)), which has

the same superposition coding structure as in the rate-splitting
scheme, but without actual splitting of message rates. Note
that similar diagonal transmission of message streams has
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Fig. 6. Illustration of the decoding process at receiver 1, where ∗ indicates a known or decoded codeword.

TABLE I

SLIDING-WINDOW SUPERPOSITION CODING SCHEME

been already used in block Markov coding for relaying
and feedback communication [39], [40]. For b blocks of
communication, the scheme is initialized with m1(0) = 1 and
terminated with m1(b) = 1, incurring a slight rate loss.

For decoding at receiver 1, m̂1(j − 1) and m̂2(j) are
recovered successively from the channel outputs yn

1 (j − 1)
and yn

1 (j), as shown in Fig. 6. In the language of typicality
decoding, at the end of block j, it finds the unique message
m̂1(j − 1) such that

(xn
1 (m̂1(j − 2)), xn

2 (m̂1(j − 1)), wn(m̂2(j − 1)), yn
1 (j − 1))

∈ T (n)
ε (X1, X2, W, Y1)

and
(xn

1 (m̂1(j − 1)), yn
1 (j)) ∈ T (n)

ε (X1, Y1)

simultaneously, where m̂1(j − 2) and m̂2(j − 1) are already
known from the previous block. Then it finds the unique m̂2(j)
such that

(xn
1 (m̂1(j − 1)), wn(m̂2(j)), yn

1 (j)) ∈ T (n)
ε (X1, W, Y1).

If any of the typicality checks fails, it declares an error.
We represent this successive cancellation decoding operation
compactly as

d1 : m̂1(j − 1) → m̂2(j), (14)

which is performed at the end of block j. To recover the
next pair of messages m̂1(j) and m̂2(j + 1), receiver 1 slides
the decoding window to yn

1 (j) and yn
1 (j + 1) at the end of

block j+1. This sliding-window decoding scheme is originally
due to Carleial [41] and used in the network decode–forward
relaying scheme [42], [43]. The overall schedule of message
decoding is shown in Table I. As can be easily checked by
inspection, decoding is successful if

R1 < I(X1; Y1) + I(X ; Y1|X1, W ),
R2 < I(W ; Y1|X1). (15)

A formal proof of this error analysis along with a complete
description of the corresponding random coding scheme is
delegated to Appendix D. Receiver 2 similarly uses successive
cancellation decoding at the end of each block j as

d2 : m̂1(j − 1) → m̂2(j − 1).

In other words, at the end of block j, 2 ≤ j ≤ b, it finds the
unique m̂1(j − 1) such that

(xn
1 (m̂1(j − 2)), xn

2 (m̂1(j − 1)), yn
2 (j − 1)) ∈ T (n)

ε

and

(xn
1 (m̂1(j − 1)), yn

2 (j)) ∈ T (n)
ε

simultaneously. Then it finds the unique m̂2(j − 1) such that

(wn(m̂2(j − 1)), yn
2 (j − 1), xn

1 (m̂1(j − 2)),

xn
2 (m̂1(j − 1))) ∈ T (n)

ε .

In the end, receiver 2 finds the unique m̂2(b) such that

(wn(m̂2(b)), yn
2 (b), xn

1 (m̂1(b − 1)), xn
2 (m1(b))) ∈ T (n)

ε .

If any of the typicality checks fails, it declares an error. One
can similarly check that the decoding is successful if

R1 < I(X1; Y2) + I(X2; Y2|X1) = I(X ; Y2),
R2 < I(W ; Y2|X).

When the nominal message rate pair of each block is (R1, R2),
the scheme achieves ( b−1

b R1, R2) on average, which can
be made arbitrarily close to (R1, R2) by letting b → ∞.
We summarize the performance of this SWSC scheme as
follows.

Proposition 1: Let p′(x1)p′(x2)p′(w) and x(x1, x2) be
fixed. Then the SWSC scheme in Table I achieves the rate
region RSWSC(p′, 2, 1, d1, d2) that consists of the set of rate
pairs (R1, R2) such that

R1 ≤ min{I(X1; Y1) + I(X ; Y1|X1, W ), I(X ; Y2)},
R2 ≤ min{I(W ; Y1|X1), I(W ; Y2|X)}.

We now note that each corner point of R1,SD ∩ R2,SD is
contained in one of the four regions

R1,SD ∩ R2,SCD1→2,

R1,SD ∩ R2,SCD2→1,

R1,SCD1→2 ∩ R2,SD,

R1,SCD2→1 ∩ R2,SD, (16)

where Rj,SCD1→2, j = 1, 2, is the set of rate pairs
(R1, R2) such that R1 ≤ I(X ; Yj), R2 ≤ I(W ; Yj |X) and
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TABLE II

SWSC SCHEME WITH DECODING ORDERS IN (18)

Rj,SCD2→1 is the set of rate pairs (R1, R2) such that R1 ≤
I(X ; Yj |W ), R2 ≤ I(W ; Yj). Since any boundary point in
R1,SD can be expressed as (8) by Lemma 1, R1,SD(p) ∩
R2,SCD1→2(p) is contained in RSWSC(p′, 2, 1) for some p′ 
p and is achieved by the SWSC scheme. The other three
regions in (16) can be achieved similarly by using different
decoding orders, and thus SWSC achieves every corner point
of R1,SD ∩ R2,SD.

Remark 4: In the SWSC scheme above, for finite b, there
is a rate loss (1/b)R1 for message M1, since no message
is scheduled via Xn

1 in block 1 and via Xn
2 in block b.

The decoding delay of one block (m̂1(j) recovered in block
j + 1) is independent of b, while the overall probability of
error is, by the union-of-events bound, linear in b due to error
propagation.

Remark 5: In order to reduce the rate loss, we can instead
send message M1 at the treating-interference-as-noise rate
min{I(X1; Y1), I(X1; Y2)} for Xn

1 in block 1 and at rate
min{I(X ; Y1|X1, W ), I(X ; Y2|X1)} for Xn

2 in block b. This
increases the overall R1 by

1
b
[min{I(X1; Y1), I(X1; Y2)}

+ min{I(X ; Y1|X1, W ), I(X ; Y2|X1)}],
which is the same as 1/b times the achievable R1 by rate-
splitting in (10a).

B. General Rate Points

The SWSC scheme developed in the previous section can-
not achieve the entire region of R1,SD ∩ R2,SD in general.
As illustrated in Fig. 7a, the scheme can achieve any point
on the dominant face of R1,SD or R2,SD at the respective
receiver. (This is clearly an improvement over the rate-splitting
multiple access scheme as noted in Remark 2.) In general,
however, these two points are not aligned, which may result in
a rate region strictly smaller than R1,SD∩R2,SD. To overcome
this deficiency, we introduce an additional layer to X while
keeping W unsplit. The receivers now have the flexibility of
merging three layers X1, X2, X3 into two groups, for example,
(X1), (X2, X3) at receiver 1 and (X1, X2), (X3) at receiver 2,
which can align the two points on the dominant faces of R1,SD

and R2,SD as illustrated in Fig. 7b.

Fig. 7. Rate loss of rate splitting in the interference channel.

To be more precise, we first present a coding scheme that
achieves the rate region consisting of rate pairs (R1, R2) such
that

R1 ≤ min{I(X1; Y1) + I(X2, X3; Y1|X1, W ),
I(X1, X2; Y2) + I(X3; Y2|X1, X2, W )},

R2 ≤ min{I(W ; Y1|X1), I(W ; Y2|X1, X2)}. (17)

In this SWSC scheme, the message m1(j) is encoded into
three sequences xn

3 , xn
2 , and xn

1 to be transmitted in three
consecutive blocks j, j + 1, and j +2, respectively. The mes-
sage m2(j) is encoded into a codeword wn to be transmitted
in block j. The encoding structure is illustrated in Table II.
The transmitted sequence xn in block j is the symbol-by-
symbol superposition of xn

1 (m1(j − 2)), xn
2 (m1(j − 1)),

and xn
3 (m1(j)).
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For decoding, the message m̂1(j) is recovered via sliding-
window decoding over three blocks. The decoding orders at
two receivers are

d1 : m̂1(j − 2) → m̂2(j), (18a)

d2 : m̂1(j − 2) → m̂2(j − 1). (18b)

The decoding process is illustrated in Table II. Following the
standard analysis, the decoding is successful at receiver 1 if

R1 < I(X1; Y1)+I(X2; Y1|X1, W )+I(X3; Y1|X1, X2, W ),
R2 < I(W ; Y1|X1),

and at receiver 2 if

R1 < I(X1; Y2) + I(X2; Y2|X1) + I(X3; Y2|X1, X2, W ),
R2 < I(W ; Y2|X1, X2),

which establishes the achievability of the rate region in (17).
We denote this rate region by RSWSC(p′, 3, 1, d1, d2).

By swapping the decoding orders between receivers 1 and 2,
i.e.,

d′1 : m̂1(j − 2) → m̂2(j − 1), (19a)

d′2 : m̂1(j − 2) → m̂2(j), (19b)

the SWSC scheme achieves the rate region RSWSC(p′, 3, 1,
d′1, d

′
2) characterized by

R1 ≤ min{I(X1, X2; Y1) + I(X3; Y1|X1, X2, W ),
I(X1; Y2) + I(X2, X3; Y2|X1, W )},

R2 ≤ min{I(W ; Y2|X1), I(W ; Y1|X1, X2)}.

This SWSC scheme turns out to be sufficient to achieve
any rate point in the simultaneous decoding region; see
Appendix B for the proof.

Proposition 2:

R1,SD(p) ∩ R2,SD(p)

=
⋃

p′�p

⋃
(d1,d2)=(18) or (19)

RSWSC(p′, 3, 1, d1, d2).

C. SWSC Achieves the MLD Region R∗

We now show that the other three component regions of
R∗ in (5), namely, R1,IAN ∩ R2,IAN, R1,SD ∩ R2,IAN, and
R1,IAN ∩ R2,SD, can be also achieved by the SWSC scheme
in Table II (with the same encoding scheme, but with different
decoding orders).

• R1,IAN ∩ R2,IAN:

d1 : m̂1(j − 2), (20a)

d2 : m̂2(j). (20b)

The corresponding achievable rate region is the set of
rate pairs (R1, R2) such that

R1 ≤ I(X1; Y1) + I(X2; Y1|X1) + I(X3; Y1|X1, X2)
= I(X ; Y1),

R2 ≤ I(W ; Y2).

• R1,SD ∩ R2,IAN:

d1 : m̂1(j − 2) → m̂2(j), (21a)

d2 : m̂2(j). (21b)

The corresponding achievable rate region is the set of
rate pairs (R1, R2) such that

R1 ≤ I(X1; Y1) + I(X ; Y1|X1, W ),
R2 ≤ min{I(W ; Y1|X1), I(W ; Y2)},

which, after taking the union over all p′  p, is equivalent
to R1,SD(p) ∩ R2,IAN(p) by Lemma 1.

• R1,IAN ∩ R2,SD:

d1 : m̂1(j − 2), (22a)

d2 : m̂1(j − 2) → m̂2(j). (22b)

The corresponding achievable rate region is the set of
rate pairs (R1, R2) such that

R1 ≤ min{I(X ; Y1), I(X1; Y2) + I(X ; Y2|X1, W )},
R2 ≤ I(W ; Y2|X1),

which, after taking the union over all p′  p, is equivalent
to R1,IAN(p) ∩ R2,SD(p) by Lemma 1.

In summary, the SWSC scheme in Table II, with p′  p
and decoding orders (18)–(22), achieves the MLD region R∗.

Theorem 2:

R∗(p) =
⋃

p′�p

⋃
(d1,d2)=(18)–(22)

RSWSC(p′, 3, 1, d1, d2).

V. SUPERPOSITION LAYERS AND DECODING ORDERS

SWSC with a given encoder structure allows multiple
decoding schemes, each with a different rate region. In this
section, we provide a more systematic treatment of the rela-
tionship between superposition layers and decoding orders.

Suppose that we split X into K layers (X1, . . . , XK) and
W into L layers (W1, . . . , WL). Consider a stream of mes-
sages, (m1(1), m2(1)), (m1(2), m2(2)), . . . , to be communi-
cated over multiple blocks. The message m1(j) is encoded
into K sequences xn

K , xn
K−1, . . . , and xn

1 to be transmitted
in K consecutive blocks j, j + 1, . . . , and j + K − 1,
respectively. Similarly, the message m2(j) is encoded into
L sequences wn

L, wn
L−1, . . . , and wn

1 to be transmitted in L
consecutive blocks j, j+1, . . . , and j+L−1, respectively. The
transmitted sequence xn in block j is the symbol-by-symbol
superposition of xn

1 (m1(j−K +1)), xn
2 (m1(j−K +2)), . . . ,

and xn
K(m1(j)). The transmitted sequence wn in block j is

the symbol-by-symbol superposition of wn
1 (m2(j − L + 1)),

wn
2 (m2(j −L + 2)), . . . , and wn

L(m2(j)). We refer to such a
layer split and message schedule as the K-L split. Table III
illustrates the encoding of the 3-2 split.

As we saw in the previous section, different decoding orders
may result in different achievable rate regions. A feasible
decoding order for a K-L split is of the following form. At the
end of block j, receiver k = 1, 2 either recovers

m̂1(j − K + 1) → m̂2(j − K + 1 − t1),
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TABLE III

SWSC ENCODING WITH A 3-2 SPLIT

for some t1 = min{K, L} − 1, . . . , 1, 0, or

m̂2(j − L + 1) → m̂1(j − L + 1 − t2),

for some t2 = 0, 1, . . . , max{K, L} − 1. For the 3-2 split
in Table III, there are five feasible decoding orders:

1: m̂1(j − 2) → m̂2(j − 3) (t1 = 1) (23)

2: m̂1(j − 2) → m̂2(j − 2) (t1 = 0) (24)

3: m̂1(j − 2) → m̂2(j − 1) (t2 = 0)
4: m̂2(j − 1) → m̂1(j − 2) (t2 = 1)
5: m̂2(j − 1) → m̂1(j − 3) (t2 = 2)

In order to write the achievable rate region corresponding to
each decoding order, we introduce the notion of layer order.
Let λ : Z1 → Z2 → · · · → ZK+L be an ordering of the
variables {X1, . . . , XK , W1, . . . , WL} such that the relative
orders X1 → X2 → · · · → XK and W1 → W2 → · · · → WL

are preserved. We say that a layer order is alternating if it
starts with either X1 → · · · → Xa1 , a1 = max{K, L} −
1, . . . , 1, 0, or W1 → · · · → Wa2 , a2 = 1, 2, . . . , min{K, L},
followed by one X and one W alternately until one of them
is exhausted, and then by the remaining variables. As in the
decoding orders, there are K +L alternating layer orders. For
the 3-2 split in Table III, the five alternating layer orders are
listed as follows 1

1: X1 → X2 → X3 → W1 → W2, (25)

2: X1 → X2 → W1 → X3 → W2, (26)

3: X1 → W1 → X2 → W2 → X3,

4: W1 → X1 → W2 → X2 → X3,

5: W1 → W2 → X1 → X2 → X3.

A layer order indicates which variable (signal layer) is recov-
ered first in successive cancellation decoding. For example,
in decoding order d = 1 in (23), X1, X2, X3 carrying
m1(j − 2) are recovered before W1, W2 carrying m2(j − 3).
In other words, all the X layers are recovered before the W
layers in successive cancellation decoding, which corresponds
to the layer order λ = 1 in (25). For another example,
in decoding order d = 2 in (24), at the end of block j,

1There are layer orders that are not alternating, yet still preserve the relative
orders X1 → X2 → X3 and W1 → W2. For example, X1 → W1 →
W2 → X2 → X3 and W1 → X1 → X2 → X3 → W2. With the
SWSC scheme introduced in this paper, such nonalternating layer orders do
not admit corresponding decoding orders. However, it turns out nonalternating
layer orders can be achieved if a new “dimension” is introduced in messages
scheduling. The detail of this extension, which can be found in [28, Section
4.4], is beyond the scope of this paper.

3 ≤ j ≤ b, we alternately recover m̂1(j − 2) and m̂2(j − 2).
The layers X1 and X2 are recovered before the layer W1,
while the layer X3 is recovered after the layer W1, which is
followed by the layer W2. This corresponds to the layer order
λ = 2 in (26).

Given a layer order, the achievable rates R1 and R2 are
given as sums of the corresponding mutual information terms.
For example, for the layer order λ = 1 in (25), the achievable
rate region at receiver k = 1, 2 is the set of rate pairs (R1, R2)
such that

R1 ≤ I(X1; Yk) + I(X2; Yk|X1) + I(X3; Yk|X1, X2),
R2 ≤ I(W1; Yk|X1, X2, X3) + I(W2; Yk|X1, X2, X3, W1).

(27)

Similarly, for the layer order λ = 2 in (26), the achievable
rate region at receiver k is characterized as

R1≤I(X1; Yk)+I(X2; Yk|X1)+I(X3; Yk|X1, X2, W1),
R2≤I(W1; Yk|X1, X2)+I(W2; Yk|X1, X2, X3, W1). (28)

Given a layer order λ : Z1 → · · · → ZK+L, define

I1 = {i : Zi ∈ {X1, . . . , XK}},
I2 = {i : Zi ∈ {W1, . . . , WL}}. (29)

Then the achievable rate region at receiver k with correspond-
ing decoding order d = λ is the set of rate pairs (R1, R2)
such that

R1 ≤
∑
i∈I1

I(Zi; Yk|Zi−1),

R2 ≤
∑
i∈I2

I(Zi; Yk|Zi−1). (30)

VI. HAN–KOBAYASHI INNER BOUND

The Han–Kobayashi coding scheme [14], illustrated
in Fig. 8, is the most powerful among known single-letter
coding techniques for the two-user interference channel.
In this scheme, rate splitting is used for the messages
M1 = (M10, M11) and M2 = (M20, M22). The messages
M10, M11, M20, M22 are carried by codewords sn, tn, un, vn,
which are then superimposed into xn and wn by symbol-
by-symbol mappings x(s, t) and w(u, v). Receiver 1 recov-
ers M̂10, M̂20, M̂11 and receiver 2 recovers M̂10, M̂20, M̂22

using simultaneous decoding. If we consider S, T, U, V as the
channel inputs, the original two-user interference channel can
then be viewed as a four-sender two-receiver channel with
conditional pmf

p(y1, y2|s, t, u, v) = p(y1, y2|x(s, t), w(u, v)).

For a fixed input pmf p(s)p(t)p(u)p(v) and functions
x(s, t), w(u, v), the Han–Kobayashi coding scheme achieves
the 4-dimensional auxiliary rate region

R1,MAC ∩ R2,MAC (31)
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Fig. 8. Han–Kobayashi coding scheme.

TABLE IV

A SCHEME THAT ACHIEVES THE HAN–KOBAYASHI INNER BOUND WITH SINGLE-USER DECODING

where

R1,MAC = {(R10, R11, R20, R22) :
(R10, R11, R20) ∈ RMAC(S, T, U ; Y1)},

R2,MAC = {(R10, R11, R20, R22) :
(R10, R20, R22) ∈ RMAC(S, U, V ; Y2)},

and RMAC(A, B, C; Y ) is the standard rate region for
a three-user MAC p(y|a, b, c) by random code ensemble
p(a)p(b)p(c). Recall that RMAC(A, B, C; Y ) consists of rate
triples (r1, r2, r3) such that

r1 ≤ I(A; Y |B, C),
r2 ≤ I(B; Y |A, C),
r3 ≤ I(C; Y |A, B),

r1 + r2 ≤ I(A, B; Y |C),
r1 + r3 ≤ I(A, C; Y |B),
r2 + r3 ≤ I(B, C; Y |A),

r1 + r2 + r3 ≤ I(A, B, C; Y ).

Finally, the Han–Kobayashi inner bound is the union over
p(s)p(t)p(u)p(v) and functions x(s, t), w(u, v) of the rate
region

Proj4→2

(
R1,MAC ∩ R2,MAC

)
, (32)

where Proj4→2 denotes the projection of the 4-dimensional
region of rate quadruples (R10, R11, R20, R22) to the
2-dimensional region of rate pairs (R1, R2) = (R10 +
R11, R20 + R22).

Now we present a coding scheme that achieves the Han–
Kobayashi inner bound with single-user decoding by showing
the achievability of the 4-dimensional auxiliary region in (31).
The two common messages M10 and M20 are transmitted
using SWSC, with the 3-1 split in Section IV-B. The two
private messages M11 and M22 are transmitted using the
single-block rate-splitting scheme in Section III-A. The signal
S is further split into three layers S1, S2, and S3. For j ∈
[b− 2], the message M10(j) is carried by sn

3 , sn
2 , and sn

1 over
blocks j, j+1, and j+2 respectively. Since the signal T is kept
unsplit, the message M20(j) is carried by a single-block code
un in block j. The private messages are further split into two
parts M11 = (M ′

11, M
′′
11) and M22 = (M ′

22, M
′′
22). The four

messages M ′
11, M

′′
11, M

′
22, M

′′
22 are carried by tn1 , tn2 , vn

1 , vn
2 ,

respectively, in a single block. The encoding is illustrated
in Table IV.

At receiver 1, messages are recovered in the order d1, which
is one of the following six (trivial messages at the first and
last blocks are skipped):

1: m̂′
11(j − 1) → m̂10(j − 2) → m̂20(j − 2) → m̂′′

11(j − 2),
2: m̂′

11(j) → m̂20(j) → m̂10(j − 2) → m̂′′
11(j),

3: m̂′
11(j) → m̂10(j − 2) → m̂′′

11(j − 2) → m̂20(j),
4: m̂′

11(j − 2) → m̂10(j − 2) → m̂20(j − 2) → m̂′′
11(j − 2),

5: m̂′
11(j) → m̂20(j) → m̂10(j − 2) → m̂′′

11(j − 1),
6: m̂′

11(j) → m̂10(j − 2) → m̂′′
11(j − 2) → m̂20(j − 1).

Fig. 9 illustrates the decoding process for d1 = 1, where
∗ indicates messages that were recovered previously. By the
standard analysis, the achievable rate region for this decoding
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Fig. 9. Illustration of the decoding process for d1 = 1.

order is the set of rate quadruples (R10, R11, R20, R22) such
that

R10 ≤ I(S1; Y1) + I(S2; Y1|S1, T1) + I(S3; Y1|S1, T1, S2),
R20 ≤ I(U ; Y1|S1, T1, S2, S3),
R11 ≤ I(T1; Y1|S1) + I(T2; Y1|S1, T1, S2, S3, U), (33)

which is exactly the rate region corresponding to the layer
order λ1

1: S1 → T1 → S2 → S3 → U → T2.

One can similarly verify that the layer orders λ1 correspond-
ing to decoding orders d1 = 2, . . . , 6 are

2: T1 → U → S1 → T2 → S2 → S3,

3: T1 → S1 → U → S2 → S3 → T2,

4: S1 → S2 → T1 → S3 → U → T2,

5: T1 → U → S1 → S2 → T2 → S3,

6: T1 → S1 → S2 → U → S3 → T2.

At receiver 2, the messages are recovered in the order d2,
which is one of the following six:

7: m̂′
22(j − 1) → m̂10(j − 2)→m̂20(j − 2) → m̂′′

22(j−2),
8: m̂′

22(j) → m̂20(j) → m̂10(j − 2) → m̂′′
22(j),

9: m̂′
22(j) → m̂10(j − 2) → m̂′′

22(j − 2) → m̂20(j),
10: m̂′

22(j − 2) → m̂10(j − 2) → m̂20(j − 2)→m̂′′
22(j−2),

11: m̂′
22(j) → m̂20(j) → m̂10(j − 2) → m̂′′

22(j − 1),
12: m̂′

22(j) → m̂10(j − 2) → m̂′′
22(j − 2) → m̂20(j − 1),

with corresponding achievable layer orders λ2

7: S1 → V1 → S2 → S3 → U → V2,

8: V1 → U → S1 → V2 → S2 → S3,

9: V1 → S1 → U → S2 → S3 → V2,

10: S1 → S2 → V1 → S3 → U → V2,

11: V1 → U → S1 → S2 → V2 → S3,

12: V1 → S1 → S2 → U → S3 → V2.
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Fig. 10. Comparison of three coded modulation schemes.

Let p′ be the pmf p′(s1)p′(s2)p′(s3)p′(t1)p′(t2)p′(u)p′(v1)
p′(v2) along with s(s1, s2, s3), t(t1, t2), and v(v1, v2). Let
R1(p′, λ1) be the rate region corresponding to the layer order
λ1 = 1, . . . , 6 at receiver 1. For example, R1(p′, 1) is the set
of rate quadruples (R10, R11, R20, R22) in (33). Similarly let
R2(p′, λ2) be the rate region corresponding to the layer order
λ2 = 7, . . . , 12 at receiver 2. This SWSC scheme achieves
R1(p′, λ1) ∩ R2(p′, λ2) for any λ1 = 1, . . . , 6 and λ2 =
7, . . . , 12, which is sufficient to achieve the 4-dimensional
auxiliary region in (31); see Appendix E for the proof.

Theorem 3: Let p denote the pmf p(s)p(t)p(u)p(v) along
with functions x(s, t) and w(u, v). Then

R1,MAC(p) ∩ R2,MAC(p)

=
⋃

p′�p

6⋃
λ1=1

12⋃
λ2=7

[R1(p′, λ1) ∩ R2(p′, λ2)].

Consequently, taking the union over all pmfs p(s)p(t)
p(u)p(v) and functions x(s, t), w(u, v), the coding scheme
in Table IV achieves the Han–Kobayashi inner bound (32)
for the two-user interference channel p(y1, y2|x, w).

VII. SLIDING-WINDOW CODED MODULATION

Coded modulation is the interface between channel coding
and modulation, and specifies how (typically binary) code-
words are mapped to sequences of constellation points. In this
section, we show how the SWSC scheme can be special-
ized to a coded modulation scheme, termed sliding-window
coded modulation (SWCM), and demonstrate through practical
implementation that conventional point-to-point encoders and
decoders can be utilized to achieve the performance expected
from high-complexity coding schemes. We also compare
SWCM with existing coded modulation schemes, such as
multilevel coding (MLC) [21], [22] and bit-interleaved coded
modulation (BICM) [23], [24].

A. An Illustration of SWCM for 4PAM

Each coded modulation scheme is specified by two map-
pings: the symbol-level mapping and the block-level map-
ping. In SWCM, the symbol-level mapping is specified by
the symbol-by-symbol mapping in superposition coding. For
example, let X1, X2 ∈ {−1, +1} be two BPSK symbols
(throughout this section we assume the unit power constraint).
Then a uniformly-spaced 4-PAM signal can be formed as

X =
1√
5
(X1 + 2X2) ∈ {− 3√

5
,− 1√

5
,

1√
5
,

3√
5
}. (34)

The block-level mapping of SWCM is specified by the
message scheduling of SWSC. For example, in the encoding

scheme in Table I, each message is encoded to a length-2n
binary codeword (potentially with interleaving), the first n bits
of which are carried by X2 symbols in the current block, and
the second n bits of which are carried by X1 symbols in
the next block. Accordingly, each transmission symbol X is
then generated by (34), using a symbol X2 from the current
codeword and a symbol X1 from the previous codeword. See
Fig. 11 in Section VII-B for an illustration of the symbol-
level and block-level mappings of the SWCM scheme that
corresponds to Table I.

It is instructive to compare SWCM with two other pop-
ular coded modulation schemes, BICM and MLC. The key
difference among the three lies in the block-level mapping;
see Fig. 10. Assuming the same symbol-level mapping (34),
in BICM, the two length-n parts xn

1 and xn
2 of a length-2n

codeword are transmitted in the same block. This contrasts
the staggered transmission of xn

1 and xn
2 in SWCM. In MLC,

instead of a single length-2n codeword, two standalone length-
n codewords xn

1 and xn
2 are generated by splitting the message

(say M ) into two parts (say M ′ and M ′′). When used for a
point-to-point channel p(y|x) under random coding, SWCM
achieves

I(X1; Y ) + I(X2; Y |X1) = I(X ; Y ).

MLC achieves the same rate if individual rates of the two
component codes are properly matched, while BICM achieves

I(X1; Y ) + I(X2; Y ) < I(X ; Y ),

the loss in which is due to self-interference between X1

and X2. Note that compared to the codeword length of n for
MLC, the codeword length for SWCM and BICM is 2n, which
can potentially result in a better finite-blocklength performance
with respect to the respective mutual information rate under
random coding. More fundamentally, individual component
codewords in MLC should be rate-controlled (which is difficult
to be done optimally in practice) and reliably decoded (which
results in rate loss under channel uncertainty or multiple
receivers). The latter limitation is reflected in the deficiency
of the rate-splitting scheme for the interference channel,
as pointed out in Remark 2. In summary, SWCM has the
advantage of high rate over BICM and the advantage of long
block length and robustness over MLC, but at the same time
suffers from error propagation over blocks and rate loss due
to initialization/termination.

B. The Generalization to Other Constellations

The SWSC framework provides great flexibility in the
symbol-level mapping and the number of layers, which
results in a variety of practical coded modulation schemes.
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Fig. 11. Encoding diagram for the LTE-turbo implementation of SWCM.

For example, a Gray mapping from two BPSK symbols to the
4PAM constellation can be formed by a different symbol-level
mapping

X =
1√
5
(X1 + 2X1 · X2). (35)

There are four other symbol-level mappings for 4PAM.
Higher-order constellations have richer structures and allow

for more diverse decompositions. For example, a uniformly-
spaced 8PAM symbol can be decomposed as the superposition

X =
1√
21

(X1 + 2X2 + 4X3) (36)

of three BPSK layers X1, X2, X3, or as the superposition

X =
1√
21

(X1 + 2
√

5X2) (37)

of one BPSK layer X1 and one 4PAM layer X2. For the
block-level mapping, each message is encoded into a length-
3n binary codeword. In case of (36), the three parts of the
codeword, each of length n, are transmitted over three consec-
utive blocks. In case of (37), the first 2n bits of the codeword
are carried by the 4PAM X2 sequence (2 bits per symbol
by the Gray or natural mapping) and the remaining n bits
are carried by the BPSK X1 sequence over two consecutive
blocks.

As another example, consider the 16QAM coded modula-
tion, which can be decomposed as the superposition

X =
1√
5
(X1 + 2X2) (38)

of two QPSK symbols X1, X2 ∈
{ei π

4 , ei 3π
4 , e−i 3π

4 , e−i π
4 }, or as the superposition

X =
1√
2
(X1 + iX2) (39)

of two 4PAM symbols X1, X2 ∈ {− 3√
5
,− 1√

5
, 1√

5
, 3√

5
}. For

both cases, two halves of a length-4n binary codeword are car-
ried by xn

1 and xn
2 over two consecutive blocks. Alternatively,

four BPSK layers can be used for staggered transmission over
four consecutive blocks.

For multiple-input multiple-output (MIMO) transmission,
there is a natural correspondence between the antenna ports
and the symbol-level mapping. Suppose that there are t trans-
mitting antennas. Then, each antenna port X(k) can transmit
the codeword carried by the SWCM layer Xk, that is,

X = (X(1), . . . , X(t))
= (X1, . . . , Xt). (40)

The SWCM scheme with the symbol-level mapping in (40) is
in fact equivalent to the block-level diagonal Bell Labs layered
space-time (D-BLAST) architecture [44]. Note that horizontal
BLAST [45], [46] and vertical BLAST [47] correspond to
MLC and BICM, respectively. In this sense, the encoder
structure of sliding-window superposition coding may well be
called diagonal superposition coding in contrast to the con-
ventional horizontal superposition coding structure of MLC.

SWCM, however, can provide much greater flexibility than
D-BLAST since the symbol-level mapping can be controlled
at the constellation level, not just at the antenna level. For
example, consider a MIMO system with two transmitting
antennas, both of which use the 4PAM constellation as in (34)

X(1) =
1√
5
(A11 + 2A12),

X(2) =
1√
5
(A21 + 2A22), (41)

where A11, A12, A21, A22 are BPSK symbols. As in
D-BLAST, we can use the symbol-level mapping in (40),
or equivalently,

X1 = (A11, A12), X2 = (A21, A22),

and communicate the two halves of a length-4n binary code-
word by xn

2 and xn
1 over two consecutive blocks. As an

alternative, we can map the least significant bits in the two
antennas to layer 1 and the remaining bits to layer 2, i.e.,

X1 = (A11, A21), X2 = (A12, A22).

As another alternative, we can use 4 layers with symbols
A11, A12, A21, A22, each carrying one fourth of the codewords
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Fig. 12. Decoding diagram for the decoding order m̂1(j − 1) → m̂2(j).

over four consecutive blocks. There can be other possibilities.
This richness can be utilized for adaptive transmission for
wireless fading channels, as demonstrated in [26].

C. Implementation With LTE Turbo Codes

We now demonstrate the feasibility of SWCM in practice
by implementing the basic 4PAM coded modulation scheme
in (34) for the Gaussian interference channel. More extensive
studies for cellular networks are reported in [27].

Consider the 2-user Gaussian interference channel in (1),
where sender 1 uses 4PAM as in (34) and sender 2 uses BPSK.
Sender 1 uses a binary code of length 2n and rate R1/2 to
communicate m1(j) through xn

2 in block j and xn
1 in block

j + 1, while sender 2 uses a binary code of length n and rate
R2 to communicate m2(j) through wn in block j; see Fig. 11.

We adopt the LTE standard turbo code [48], which has the
flexibility in the code rate and the block length. In particular,
we start with the rate 1/3 mother code and adjust the rates
and lengths according to the rate matching algorithm in the
standard. Note that for R1 < 2/3, some code bits are repeated
and for R1 > 2/3, some code bits are punctured. We set the
block length n = 2048 and the number of blocks b = 20.
We use the LOG-MAP algorithm with up to 8 iterations in
each stage of turbo decoding. We assume that a rate pair
(R1, R2) is achieved for a given channel if the resulting
block-error rate (BLER) is below 0.1 over 200 independent
sets of simulations. Sliding-window decoding is performed at
both receivers. Fig. 12 illustrates the decoding operation at
receiver 1, under decoding order d1 : m̂1(j − 1) → m̂2(j).

Fig. 13 plots the symmetric rate (R1 = R2) against the INR
for the symmetric Gaussian interference channel (S1 = S2

and I1 = I2) when the SNR is held fixed at 8 dB. The
solid lines represent theoretical achievable rates (mutual infor-
mation) of MLD/SND, SWCM, and IAN. In IAN decoding,
the interference is treated as Gaussian noise of the same
power and the constellation information of interference is not

Fig. 13. Performance comparison in the symmetric Gaussian interference
channel. The solid lines correspond to the theoretical performance. The dashed
lines correspond to the simulation performance by the implementations using
the LTE turbo codes.

used. In SWCM decoding, the optimal decoding orders are
used at the given channel parameters. There is a gap between
MLD/SND and SWCM (cf. Theorem 2), since the encoder
is fixed using a symbol-level mapping (34) with only two
layers X1, X2 ∼ Unif{−1, +1}. The dashed lines represent
the achievable rates of the actual implementation using the
LTE turbo codes. The 4PAM encoding at sender 1 uses BICM
for IAN. As the INR grows, the gain of SWCM over IAN
increases from 53.44% (at the INR of 6 dB) to 150.32%
(at 8 dB) and to 266.51% (at 10 dB).

VIII. CONCLUDING REMARKS

In this paper, we proposed the sliding-window superposition
coding scheme (SWSC) as an implementable alternative to
the rate-optimal simultaneous decoding. Combined with the
conventional rate-splitting technique, the coding scheme can
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be generalized to achieve the Han–Kobayashi inner bound on
the capacity region of the two-user interference channel. Since
the publication of the initial work [20] on SWSC, extensive
simulations of the SWSC scheme have been performed in
more practical communication scenarios, such as the Ped-B
fading interference channel model [26], [27]. With several
improvements in transceiver design, such as soft decoding,
input bit-mapping and layer optimization, and power control,
the performance figures presented here can be improved
by another 10–20% [26]. System-level performance as well
as requirements on the network operation for implementing
SWSC in 5G cellular networks are discussed in [27]. These
results indicate that SWSC is a promising candidate for
interference management in future cellular networks.

APPENDIX A
PROOF OF LEMMA 1

First, for any rate pair (R1, R2) in (8), we have

R1 ≤ I(X1; Y1) + I(X ; Y1|W, X1)
(a)

≤ I(X1; Y1|W ) + I(X ; Y1|W, X1)
(b)
= I(X ; Y1|W ),

R2 ≤ I(W ; Y1|X1)
(c)

≤ I(W ; Y1|X1, X2)
(d)
= I(W ; Y1|X),

R1 + R2 ≤ I(X1; Y1) + I(X ; Y1|W, X1) + I(W ; Y1|X1)
= I(X, W ; Y1), (42)

where (a) and (c) follow since W is independent of (X1, X2),
and (b) and (d) follow since X1 → X → (W, Y1) form a
Markov chain. Thus, any rate point in RRS(p′) with p′  p
is also in R1,SD(p).

Now it suffices to show that for any rate point (I1, I2) on
the dominant face, i.e., I1 + I2 = I(X, W ; Y1), there exists a
p′  p such that

I1 = I(X1; Y1) + I(X ; Y1|X1, W ),
I2 = I(W ; Y1|X1).

To this end, note that when X1 = X and X2 = ∅, expres-
sion (8) attains one corner point (I(X ; Y1), I(W ; Y1|X));
when X1 = ∅ and X2 = X , expression (8) attains the other
corner point (I(X ; Y1|W ), I(W ; Y1)). Moreover, the rate pair
in (8) and (I1, I2) share the same sum-rate as in (42). Hence,
it suffices to show that for every α ∈ [0, 1], there exists a
choice of p(x1)p(x2) and function x(x1, x2) such that

I(W ; Y1|X1) = I2 = αI(W ; Y1) + (1 − α)I(W ; Y1|X).

Let pX1(x) = (1−α)pX(x) for x ∈ X and pX1(e) = α. Let
X2 be independent of X1 and pX2(x) = pX(x) for x ∈ X .
Let

x(x1, x2) =

{
x1, if x1 �= e,
x2, otherwise.

This choice of p(x1)p(x2) and x(x1, x2) induces a conditional
pmf

pX1|X(x1|x) =

⎧⎪⎨
⎪⎩

1 − α, if x1 = x,

α, if x1 = e,
0, otherwise,

(43)

which is an erasure channel with input X , output X1, and
erasure probability α. Define E = �{X1=e}. It can be checked
that E ∼ Bern(α) is independent of X and X2. Thus, we have

I(W ; Y1|X1) = I(W ; Y1|X1, E)
= αI(W ; Y1|X1, E = 1)

+ (1 − α)I(W ; Y1|X1, E = 0)
(a)
= αI(W ; Y1|X1 = e, E = 1)

+ (1 − α)I(W ; Y1|X, X1, E = 0)
(b)
= αI(W ; Y1|X1 = e, E = 1)

+ (1 − α)I(W ; Y1|X)
(c)
= αI(W ; Y1|E = 1) + (1 − α)I(W ; Y1|X)
(d)
= αI(W ; Y1) + (1 − α)I(W ; Y1|X),

where (a) follows since when E = 0, X1 = X , (b)
follows since given X , (W, Y1) are conditionally independent
of (X1, E), (c) follows since E = 1 is equivalent as X1 =
e, and (d) follows since E is independent of (X, W, Y1).
Therefore, as α increases from 0 to 1, the rate pair in (8)
moves continuously and linearly from one corner point to the
other along the line R1 + R2 = I(X, W ; Y1).

APPENDIX B
PROOF OF PROPOSITION 2

By the proof of Lemma 1 (Appendix A), R1,SD ∩R2,SD is
equivalent to the set of (R1, R2) such that

R1 ≤ min{I(X ′
1; Y1) + I(X ; Y1|X ′

1, W ),
I(X ′′

1 ; Y2) + I(X ; Y2|X ′′
1 , W )}

R2 ≤ min{I(W ; Y1|X ′
1), I(W ; Y2|X ′′

1 )} (44)

for erasure channels p(x′
1|x) and p(x′′

1 |x) with erasure prob-
abilities α′ and α′′ respectively. Suppose that α′ > α′′.
Then the channel p(x′

1|x) is degraded with respect to the
channel p(x′′

1 |x). Since the rate expressions in (44) only
depend on the marginal conditional pmfs of p(x′

1, x
′′
1 |x),

we assume without loss of generality that X → X ′′
1 → X ′

1

form a Markov chain. By the functional representation lemma
(twice), for p(x′

1|x′′
1 ), there exists an X2 independent of X ′

1

such that X ′′
1 = f(X ′

1, X2); for p(x′′
1 |x), there exists an

X3 independent of (X2, X
′
1) such that X = g(X ′′

1 , X3) =
g(f(X ′

1, X2), X3) � x(X ′
1, X2, X3). Renaming X1 � X ′

1 and
plugging X ′′

1 = f(X1, X2) into (44), we obtain the rate region
RSWSC(p′, 3, 1, d1, d2) with (d1, d2) given in (18). In the case
when α′ ≤ α′′, we can assume that X → X ′

1 → X ′′
1 form

a Markov chain. Then, using the functional representation
similarly as above, the rate region in (44) can be reduced
to the rate region RSWSC(p′, 3, 1, d1, d2) with (d1, d2) given
in (19).
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APPENDIX C
PROOF OF THEOREM 1

We prove the stronger statement (13) in Theorem 1, which
implies the weaker statement (12). Consider the symmetric
Gaussian interference channel (cf. (1)) with g11 = g22 = 1,
g12 = g21 = g, S1 = S2 = S = P and I1 = I2 = I = g2P .
Assume that the interference channel has strong, but not very
strong, interference, i.e., S < I < S(S + 1). The capacity
region of this channel is characterized by the set of rate pairs
(R1, R2) such that

R1 ≤ C(S),
R2 ≤ C(S),

R1 + R2 ≤ C(I + S),

which is achieved by simultaneous decoding with a single
input distribution X1, X2 ∼ N(0, P ) [7], [14].

Given R(p, s, t, d1, d2), let R∗(s, t, d1, d2) be the closure
of the union of R(p, s, t, d1, d2) over all p. Define

R∗
1(s, t, d1, d2) = max{R1 : (R1, C(S)) ∈ R∗(s, t, d1, d2)}

as the maximal achievable rate R1 such that R2 is at individual
capacity. In order to show the corner point of the capacity
region is not achievable using any (p, s, t, d1, d2) rate-splitting
scheme, it suffices to establish the following.

Proposition 3: For the symmetric Gaussian interference
channel with S < I < S(S + 1),

R∗
1(s, t, d1, d2) < C

( I

1 + S

)
for any finite s, t and decoding orders d1, d2.

The remainder of this appendix is dedicated to the proof
of Proposition 3. First, we find the optimal decoding order
at receiver 2 of the (p, s, t, d1, d2) rate-splitting scheme that
achieves R∗

1(s, t, d1, d2). We note that in homogeneous super-
position coding, message parts are encoded into independent
codewords, and thus can be recovered in an arbitrary order
in general (which is in sharp contrast to heterogeneous super-
position coding, where m̂ij has to be recovered before m̂ik

for j < k, i = 1, 2). Henceforth, by renaming the message
parts, we assume without loss of generality that at receiver 2,
the decoding order among message parts {m̂11, . . . , m̂1s} is
m̂11 → m̂12 → · · · → m̂1s and the decoding order among
messages parts {m̂21, . . . , m̂2t} is m̂21 → m̂22 → · · · → m̂2t.
Note that between message parts of m1 and m2, there are still
flexibility for all possible permutations as long as the subsets
{m̂11, . . . , m̂1s} and {m̂21, . . . , m̂2t} are in order. The next
lemma states the optimal order among them.

Lemma 2: For any (p, s, t, d1, d2) rate-splitting scheme that
achieves R∗

1(s, t, d1, d2), the decoding order at receiver 2 is

d∗2 : m̂11→m̂12→· · ·→m̂1s→m̂21→m̂22→· · ·→m̂2t.

Proof: Fix any (p, s, t, d1, d2) rate-splitting scheme that
guarantees R2 = C(S). Suppose that m̂2j is recovered earlier
than m̂1k at receiver 2, that is,

d2 : d21 → m̂2j → m̂1k → d22.

Now flip the decoding order of m̂2j and m̂1k in d̃2 as

d̃2 : d21 → m̂1k → m̂2j → d22

and construct (p, s, t, d1, d̃2) rate-splitting scheme, where the
message splitting, the underlying distribution, and decoding
order d1 remain the same. Let R̃ij be the rate of the message
part mij in the (p, s, t, d1, d̃2) rate-splitting scheme. Then we
have that all the rates remain the same except

R2j = I(Wj ; Y2|W j−1, Xk−1),

R̃2j = I(Wj ; Y2|W j−1, Xk),

R1k = I(Xk; Y2|W j , Xk−1),

R̃1k = I(Xk; Y2|W j−1, Xk−1).

Note that R2j ≤ R̃2j since Xk is independent of (W j , Xk−1).
On the other hand, since R2j already results in full rate at R2,
we must have R̃2j = R2j . It follows that

I(Xk; Wj |Y2, W
j−1, Xk−1) = 0

and therefore R1j = R̃1j .

Next, we discuss the structure of the decoding order at
receiver 1.

Lemma 3: In order to show the insufficiency in achieving
the corner point (C(I/(1+S)), C(S)) for any (p, s, t, d1, d2)
rate-splitting scheme, it suffices to show the insufficiency of any
(p, s, s, d∗1, d∗2) rate-splitting scheme with decoding orders

d∗1 : m̂1,π(1) → m̂2,σ(1) → m̂1,π(2) → m̂2,σ(2)

→ · · · → m̂1,π(s−1) → m̂2,σ(s−1) → m̂1,π(s),

d∗2 : m̂11 → m̂12 → · · · → m̂1s → m̂21 → m̂22

→ · · · → m̂2s, (45)

where π : [s] → [s], σ : [s] → [s] are two permutations on the
index set [s].

Proof: First, there is no loss of generality in assuming
s = t, because any (p, s, t, d1, d2) scheme can be viewed
as a special case of some (p′, max{s, t}, max{s, t}, d′1, d′2)
scheme by nulling out the corresponding inactive variables and
preserving the distribution and decoding orders of the active
ones. For the alternating decoding order at receiver 1, we note
that a (p, s, s, d1, d

∗
2) scheme with arbitrary decoding order d1

can viewed as a special case of some (p̃, 2s, 2s, d̃∗1, d̃
∗
2) scheme

with alternating decoding order d̃∗1. For example, for s = 2,
any decoding order must be one of the following six forms

m̂1,π(1) → m̂1,π(2) → m̂2,σ(1) → m̂2,σ(2),

m̂1,π(1) → m̂2,σ(1) → m̂1,π(2) → m̂2,σ(2),

m̂2,σ(1) → m̂1,π(1) → m̂2,σ(2) → m̂1,π(1),

m̂2,σ(1) → m̂2,σ(2) → m̂1,π(1) → m̂1,π(2),

m̂1,π(1) → m̂2,σ(1) → m̂2,σ(2) → m̂1,π(2),

m̂2,σ(1) → m̂1,π(1) → m̂1,π(2) → m̂2,σ(2),

which are all special cases of the alternating order

m̂1,π̃(1) → m̂2,σ̃(1) → m̂1,π̃(2) → m̂2,σ̃(2) → m̂1,π̃(3)

→ m̂2,σ̃(3) → m̂1,π̃(4).
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Moreover, because of the special structure of d̃∗2, it remains
the optimal decoding order (in the sense of Lemma 2) even
after nulling out the inactive message parts.

Now, we provide a necessary condition for a rate-splitting
scheme to achieve the corner point of the capacity region.

Lemma 4: If a (p, s, t, d1, d
∗
2) rate-splitting scheme attains

the corner point (C(I/(1 + S)), C(S)), then p must satisfy

X ∼ N(0, P ) and W ∼ N(0, P ).

Proof: No matter what d1 is, because of the optimal order
d∗2, the rate constraints for R2 must satisfy

R2 ≤
t∑

j=1

I(Wj ; Y2|X, W j−1)

= I(W ; Y2|X)
≤ C(S). (46)

Given X , the channel from W to Y2 is a Gaussian channel with
SNR S. Therefore the condition W ∼ N(0, P ) is necessary
for (46) to hold with equality. Similarly, R1 must satisfy

R1 ≤
s∑

j=1

I(Xj ; Y2|Xj−1)

= I(X ; Y2)

≤ C
(

I

1 + S

)
. (47)

Given W ∼ N(0, P ), the channel from X to Y2 is a Gaussian
channel with SNR I/(1 + S). Therefore, the condition X ∼
N(0, P ) is necessary for (47) to hold with equality.

We also need the following technical lemma.
Lemma 5: Let F (u, x) be any (continuous) distribution

such that X ∼ N(0, P ) and I(U ; Y ) = 0, where Y = X +N
with N ∼ N(0, 1) independent of X . Then, I(U ; X) = 0.

Proof: For every u ∈ U , we have

I(X ; Y |U = u) = h(Y |U = u) − h(Y |X, U = u)
(a)
= h(Y ) − h(Y |X)
= C(P ),

where (a) follows since Y is independent of U and U → X →
Y form a Markov chain. Suppose for some u, E(X2|U =
u) < P , i.e., the effective channel SNR is strictly less than
P . Then I(X ; Y |U = u) < P . As a result, we must have
E(X2|U = u) ≥ P for all u ∈ U . On the other hand,

P ≤
∫

E(X2|U = u)dF (u)

= E(X2)
= P,

which forces E(X2|U = u) = P for almost all u. Since
the Gaussian input N(0, P ) is the unique distribution that
attains the rate C(P ) in the Gaussian channel with SNR P ,
the distribution F (x|u) must be N(0, P ) for almost all u.
Therefore I(U ; X) = 0.

We are ready to establish the suboptimality of rate-splitting
schemes.

By Lemma 3, it suffices to show the insufficiency of
any (p, s, s, d∗1, d∗2) rate-splitting scheme with decoding orders
given in (45). The achievable rate region of this scheme is
characterized by

R1 ≤
s∑

i=1

min{I(Xπ(i); Y2|Xπ(i)−1),

I(Xπ(i); Y1|Xπ(1), . . . , Xπ(i−1), Wσ(1), . . . , Wσ(i−1))}
� I1

R2 ≤
s−1∑
i=1

min{I(Wσ(i); Y2|X, W σ(i)−1),

I(Wσ(i); Y1|Xπ(1), . . . , Xπ(i), Wσ(1), . . . , Wσ(i−1)), }
+ I(Wσ(s); Y2|X, Wσ(1), . . . , Wσ(s−1))

� I2

Assume that the corner point of the capacity region is achieved
by this scheme, i.e.,

I1 = C(I/(1 + S)), (48)

I2 = C(S). (49)

Then, by Lemma 4, we must have X ∼ N(0, P ) and W ∼
N(0, P ). Consider

I1 ≤ I(Xπ(1); Y1) +
∑

i∈[s]\π(1)

I(Xi; Y2|X i−1)

≤ I(Xπ(1); Y1) + I(Xπ(1)−1; Y2)

+ I(Xs
π(1)+1; Y2|Xπ(1))

(a)

≤ I(Xπ(1); Y1) + I(Xπ(1)−1; Y2|Xπ(1))

+ I(Xs
π(1)+1; Y2|Xπ(1))

= h(Y1) − h(Y1|Xπ(1)) + h(Y2|Xπ(1)) − h(Y2|Xπ(1))

+ h(Y2|Xπ(1)) − h(Y2|X)
= h(Y1) − h(Y1|Xπ(1)) + h(Y ′

2 |Xπ(1)) − h(Y ′
2 |X) (50)

where Y ′
2 = Y2/g = X + (W + N2)/g and (a) follows since

Xπ(1) is independent of Xπ(1)−1. Since

1
2

log(2πe(S + 1)/g2) = h(Y ′
2 |X)

≤ h(Y ′
2 |Xπ(1))

≤ h(Y ′
2)

=
1
2

log(2πe(I + S + 1)/g2),

there exists an α ∈ [0, 1] such that h(Y ′
2 |Xπ(1)) =

(1/2) log(2πe (αI + S + 1)/g2). Moreover, since W ∼
N(0, P ) and I < S(1+S), the channel X → Y1 is a degraded
version of the channel X → Y ′

2 , i.e., Y1 = Y ′
2 + N ′, where

N ′ ∼ N(0, I + 1 − (S + 1)/g2) is independent of X and W .
By the entropy power inequality,

22h(Y1|Xπ(1)) ≥ 22h(Y ′
2 |Xπ(1)) + 22h(N ′|Xπ(1))

= 2πe(αS + I + 1).
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Therefore, it follows from (50) that

I1 ≤ h(Y1) − h(Y1|Xπ(1)) + h(Y ′
2 |Xπ(1)) − h(Y ′

2 |X)

≤ 1
2

log
(

(I + S + 1)(αI + S + 1)
(αS + I + 1)(1 + S)

)
≤ C(I/(1 + S)),

where the last step follows since S < I . To match the standing
assumption in (48), we must have equality in (a), which forces
α = 1 and h(Y ′

2 |Xπ(1)) = (1/2) log(2πe(I + S + 1)/g2) =
h(Y ′

2), i.e., I(Xπ(1); Y ′
2) = 0. Note that X, W ∼ N(0, P ) and

the channel from X to Y ′
2 is a Gaussian channel. Applying

Lemma 5 yields

I(Xπ(1); X) = 0. (51)

Now, I2 can be simplified to

I2 ≤ I(Wσ(1); Y1|Xπ(1)) +
∑

i∈[s]\σ(1)

I(Wi; Y2|X, W i−1)

(b)
= I(Wσ(1); Y1) + I(W σ(1)−1; Y2|X)

+ I(W s
σ(1)+1; Y2|X, W σ(1))

(c)

≤ I(Wσ(1); Y1) + I(W σ(1)−1; Y2|X, Wσ(1))

+ I(W s
σ(1)+1; Y2|X, W σ(1))

= h(Y1) − h(Y1|Wσ(1)) + h(Y2|X, Wσ(1))

− h(Y2|X, W σ(1)) + h(Y2|X, W σ(1)) − h(Y2|X, W )

=h(Ỹ1)−h(Ỹ1|Wσ(1))+h(Ỹ2|Wσ(1)) − h(Ỹ2|W ) (52)

where Ỹ1 = Y1/g = W +(X+N1)/g and Ỹ2 = W +N2. Here
(b) follows since I(Xπ(1); Y1|Wσ(1)) ≤ I(Xπ(1); Y1|W ) =
I(Xπ(1); X + N1) ≤ I(Xπ(1); X) = 0 and I(Xπ(1); Y1) ≤
I(Xπ(1); X) = 0, which implies

I(Wσ(1); Y1|Xπ(1)) = I(Wσ(1); Y1|Xπ(1)) + I(Xπ(1); Y1)
= I(Wσ(1); Y1) + I(Xπ(1); Y1|Wσ(1))
= I(Wσ(1); Y1),

and (c) follows since Wσ(1) and (W σ(1)−1, X) are indepen-
dent. Since

1
2

log(2πe) = h(Ỹ2|W )

≤ h(Ỹ2|Wσ(1))

≤ h(Ỹ2)

=
1
2

log(2πe(1 + S)),

there exists a β ∈ [0, 1] such that h(Ỹ2|Wσ(1)) =
(1/2) log(2πe (1 + βS)). Moreover, since X ∼ N(0, P ) and
I < S(1 + S), Ỹ1 is a degraded version of Ỹ2, i.e., Ỹ1 =
Ỹ2 + Ñ , where Ñ ∼ N(0, (1 + S)/g2 − 1) is independent of
X and W . Applying the entropy power inequality, we have

22h(Ỹ1|Wσ(1)) ≥ 22h(Ỹ2|Wσ(1)) + 22h(Ñ |Wσ(1))

= 2πe(βS + (1 + S)/g2).

Therefore, it follows from (52) that

I2 ≤ h(Ỹ1) − h(Ỹ1|Wσ(1)) + h(Ỹ2|Wσ(1)) − h(Y2|X, W )

≤ 1
2

log
(

(I + S + 1)(1 + βS)
g2(βS + (1 + S)/g2)

)
≤ C(S),

where the last step follows from the channel condition I <
(1+S)S. To match the standing assumption in (49), we must
have equality above, which forces β = 1 and h(Ỹ2|Wσ(1)) =
(1/2) log(2πe(1 + S)) = h(Ỹ2), i.e., I(Wσ(1); Ỹ2) = 0. Note
that W ∼ N(0, P ) and the channel from W to Ỹ2 is a Gaussian
channel. Applying Lemma 5 yields

I(Wσ(1); W ) = 0. (53)

To continue analyzing the dependency between (Xπ(1),
Xπ(2)) and X , we note that condition (53) implies that

I(Xπ(2); Y1|Xπ(1), Wσ(1))
= I(Xπ(2); Y1|Xπ(1)) + I(Wσ(1); Y1|Xπ(1), Xπ(2))

− I(Wσ(1); Y1|Xπ(1))
(d)
= I(Xπ(2); Y1|Xπ(1)), (54)

where (d) follows since

I(Wσ(1); Y1|Xπ(1)) ≤ I(Wσ(1); Y1|Xπ(1), Xπ(2))
≤ I(Wσ(1); Y1|X)
≤ I(Wσ(1); W )
= 0.

Moreover, condition (51) implies that

I(Xπ(1); Y2|Xπ(2)) ≤ I(Xπ(1); Y2, Xπ(2))
≤ I(Xπ(1); Y2, X)
= I(Xπ(1); X, gX + W + N2)
= 0

and thus
h(Y2|Xπ(2)) = h(Y2|Xπ(2), Xπ(1)). (55)

With (54) and (55), we can bound I1 alternatively as

I1 ≤ I(Xπ(2); Y1|Xπ(1), Wσ(1)) +
∑

i∈[s]\π(2)

I(Xi; Y2|X i−1)

= I(Xπ(2); Y1|Xπ(1)) + I(Xπ(2)−1; Y2)

+ I(Xs
π(2)+1; Y2|Xπ(2))

≤ I(Xπ(2); Y1|Xπ(1)) + I(Xπ(2)−1; Y2|Xπ(2))

+ I(Xs
π(2)+1; Y2|Xπ(2))

= h(Y1|Xπ(1)) − h(Y1|Xπ(2), Xπ(1)) + h(Y2|Xπ(2))
− h(Y2|X)

= h(Y1) − h(Y1|Xπ(2), Xπ(1)) + h(Y2|Xπ(2), Xπ(1))
− h(Y2|X)

= h(Y1) − h(Y1|Xπ(2), Xπ(1)) + h(Y ′
2 |Xπ(2), Xπ(1))

− h(Y ′
2 |X). (56)

Note that the expression in (56) is in the same form of (50),
except that Xπ(1) is replaced by the pair (Xπ(1), Xπ(2)).
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From this point on, following the identical argument as before
with variable substitution Xπ(1) ↔ (Xπ(1), Xπ(2)), we con-
clude that

I(Xπ(1), Xπ(2); X) = 0.

Now, repeating this procedure, we can similarly show that

I(Xπ(1), . . . , Xπ(s−1); X) = 0,

I(Wσ(1), . . . , Wσ(s−1); W ) = 0. (57)

However, condition (57) implies that for i ∈ [s − 1]

I(Xπ(i); Y1|Xπ(1), . . . , Xπ(i−1), Wσ(1), . . . , Wσ(i−1))
≤ I(Xπ(i); X, W, Y1)
= I(Xπ(i); X)
= 0

and that

I(Xπ(s); Y1|Xπ(1), . . . , Xπ(s−1), Wσ(1), . . . , Wσ(s−1))
− I(X ; Y1)

= I(Wσ(1), . . . , Wσ(s−1); Y1|X)
− I(Xπ(1), . . . , Xπ(s−1); Y1)
− I(Wσ(1), . . . , Wσ(s−1); Y1|Xπ(1), . . . , Xπ(s−1))

(e)
= 0,

where (e) follows since

I(Wσ(1), . . . , Wσ(s−1); Y1|Xπ(1), . . . , Xπ(s−1))
≤ I(Wσ(1), . . . , Wσ(s−1); Y1|X)
≤ I(Wσ(1), . . . , Wσ(s−1); W )
= 0

and

I(Xπ(1), . . . , Xπ(s−1); Y1) ≤ I(Xπ(1), . . . , Xπ(s−1); X)
= 0.

Therefore,

I1 =
s∑

i=1

min{I(Xπ(i); Y2|Xπ(i)−1),

I(Xπ(i); Y1|Xπ(1), . . . , Xπ(i−1), Wσ(1), . . . , Wσ(i−1))}
= min{I(Xπ(s); Y2|Xπ(s)−1),
I(Xπ(s); Y1|Xπ(1), . . . , Xπ(s−1), Wσ(1), . . . , Wσ(s−1))}
≤ I(Xπ(s); Y1|Xπ(1), . . . , Xπ(s−1), Wσ(1), . . . , Wσ(s−1))
= I(X ; Y1)
= C(S/(1 + I))
< C(I/(S + I)),

which is a contradiction to the standing assumption in (48).
This completes the proof of Proposition 3.

APPENDIX D
THE SWSC SCHEME IN TABLE I

Codebook generation. Fix a pmf p′(x1)p′(x2)p′(w) and
a function x(x1, x2). Randomly and independently gener-
ate a codebook for each block. For notational convention,
we assume m1(0) = m1(b) = 1. For j ∈ [b], ran-
domly and independently generate 2nR1 sequences xn

1 (m1(j−
1)), m1(j − 1) ∈ [2nR1 ], each according to

∏n
i=1 p′X1

(x1i).
For j ∈ [b], randomly and independently generate 2nR1

sequences xn
2 (m1(j)), m1(j) ∈ [2nR1 ], each according to∏n

i=1 p′X2
(x2i). For j ∈ [b], randomly and independently

generate 2nR2 sequences wn(m2(j)), m2(j) ∈ [2nR2 ], each
according to

∏n
i=1 p′W (wi). This defines the codebook

Cj =
{
xn

1 (m1(j − 1)), xn
2 (m1(j)), wn(m2(j)) :

m1(j−1), m1(j) ∈ [2nR1 ], m2(j) ∈ [2nR2 ]
}
, j ∈ [b].

Encoding. In block j ∈ [b], sender 1 transmits xi(x1i

(m1(j−1)), x2i(m1(j))) at time i ∈ [n] and sender 2 transmits
wn(m2(j)). Table I reveals the scheduling of the messages.

Decoding. Let the received sequences in block j be yn
1 (j)

and yn
2 (j), j ∈ [b]. For receiver 1, at the end of block 1, it finds

the unique message m̂2(1) such that

(wn(m̂2(1)), yn
1 (1), xn

1 (m1(0))) ∈ T (n)
ε .

At the end of block j, 2 ≤ j ≤ b, it finds the unique message
m̂1(j − 1) such that

(xn
1 (m̂1(j−2)), xn

2 (m̂1(j−1)), wn(m̂2(j−1)), yn
1 (j−1))∈T (n)

ε

and

(xn
1 (m̂1(j − 1)), yn

1 (j)) ∈ T (n)
ε

simultaneously. Then it finds the unique m̂2(j) such that

(wn(m̂2(j)), yn
1 (j), xn

1 (m̂1(j − 1))) ∈ T (n)
ε .

If any of the typicality checks fails, it declares an error.
We analyze the probability of decoding error averaged over

codebooks. Assume without loss of generality that M1(j) =
M2(j) = 1. We divide the error events as follows

E11(j − 2) = {M̂1(j − 2) �= 1},
E12(j − 1) = {M̂2(j − 1) �= 1},
E13(j − 1) = {(Xn

1 (M̂1(j − 2)), Xn(1), Wn(M̂2(j − 1)),

Y n
1 (j − 1)) �∈ T (n)

ε or (Xn
1 (1), Y n

1 (j)) �∈ T (n)
ε },

E14(j − 1) = {(Xn
1 (M̂1(j − 2)), Xn(m1(j − 1)),

Wn(M̂2(j − 1)), Y n
1 (j − 1)) ∈ T (n)

ε

and (Xn
1 (m1(j − 1)), Y n

1 (j)) ∈ T (n)
ε

for some m1(j − 1) �= 1},
E15(j) = {(Wn(1), Y n

1 (j), Xn
1 (M̂1(j − 1))) �∈ T (n)

ε },
E16(j) = {(Wn(m2(j)), Y n

1 (j), Xn
1 (M̂1(j − 1))) ∈ T (n)

ε

for some m2(j) �= 1}.
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We analyze by induction. By assumption E11(0) = ∅. Thus in
block 1, the probability of error is upper bounded as

P{M̂2(1) �= 1} = P(E12(1))
≤ P(E15(1)) + P(E16(1)).

Now by the law of large numbers, P(E15(1)) → 0 as n → ∞.
By the packing lemma, P(E16(1)) → 0 as n → ∞ if R2 <
I(W ; Y1|X1)− δ(ε). Now assume that the probability of error
P(E11(j − 2) ∪ E12(j − 1)) in block j − 1 tends to zero as
n → ∞. In block j, the probability of error is upper bounded
as

P{(M̂1(j − 1), M̂2(j)) �= (1, 1)}
≤ P(E11(j − 2) ∪ E12(j − 1) ∪ E11(j − 1) ∪ E12(j))
≤ P(E11(j − 2) ∪ E12(j − 1))

+ P(E11(j − 1) ∩ Ec
11(j − 2) ∩ Ec

12(j − 1))
+ P(E12(j) ∩ Ec

11(j − 1))
≤ P(E11(j − 2) ∪ E12(j − 1))

+ P(E13(j − 1) ∩ Ec
11(j − 2) ∩ Ec

12(j − 1))
+ P(E14(j − 1) ∩ Ec

11(j − 2) ∩ Ec
12(j − 1))

+ P(E15(j) ∩ Ec
11(j − 1)) + P(E16(j) ∩ Ec

11(j − 1)).

By the induction assumption, the first term tends to zero as
n → ∞. By the independence of the codebooks, the law of
large numbers, and the packing lemma, the second, fourth, and
fifth terms tend to zero as n → ∞ if R2 < I(W ; Y1|X1)−δ(ε).
The third term P(E14(j−1)∩Ec

11(j−2)∩Ec
12(j−1)) requires

a special care. We have

P(E14(j − 1) ∩ Ec
11(j − 2) ∩ Ec

12(j − 1))

= P{(Xn
1 (1), Xn(m1(j − 1)), Wn(1), Y n

1 (j − 1)) ∈ T (n)
ε

and (Xn
1 (m1(j − 1)), Y n

1 (j)) ∈ T (n)
ε

for some m1(j − 1) �= 1}
=

∑
m1(j−1) �=1

P{(Xn
1 (m1(j − 1)), Y n

1 (j)) ∈ T (n)
ε and

(Xn
1 (1), Xn(m1(j − 1)), Wn(1), Y n

1 (j − 1)) ∈ T (n)
ε }

(a)
=

∑
m1(j−1) �=1

P{(Xn
1 (m1(j − 1)), Y n

1 (j)) ∈ T (n)
ε }

· P{(Xn
1 (1), Xn(m1(j − 1)), Wn(1), Y n

1 (j − 1) ∈ T (n)
ε }

(b)

≤ 2nR12−n(I(X;Y1|W,X1)−δ(ε))2−n(I(X1;Y1)−δ(ε)),

which tends to zero if R1 < I(X1; Y1) + I(X ; Y1|W, X1) −
2δ(ε). Here (a) follows by the independence of the codebooks,
which implies the events

{(Xn
1 (1), Xn(m1(j − 1)), Wn(1), Y n

1 (j − 1)) ∈ T (n)
ε }

and

{(Xn
1 (m1(j − 1)), Y n

1 (j)) ∈ T (n)
ε }

are independent for each m1(j − 1) �= 1, and (b) follows by
the independence of the codebooks and the joint typicality
lemma.

For receiver 2, at the end of block j, 2 ≤ j ≤ b, it finds the
unique m̂1(j − 1) such that

(xn
1 (m̂1(j − 2)), xn

2 (m̂1(j − 1)), yn
2 (j − 1)) ∈ T (n)

ε

and

(xn
1 (m̂1(j − 1)), yn

2 (j)) ∈ T (n)
ε

simultaneously. Then it finds the unique m̂2(j − 1) such that

(wn(m̂2(j − 1)), yn
2 (j − 1), xn

1 (m̂1(j − 2)),

xn
2 (m̂1(j − 1))) ∈ T (n)

ε .

In the end, receiver 2 finds the unique m̂2(b) such that

(wn(m̂2(b)), yn
2 (b), xn

1 (m̂1(b − 1)), xn
2 (m1(b))) ∈ T (n)

ε .

If any of the typicality checks fails, it declares an error. With
a similar analysis as above, the decoding is successful if

R1 < I(X1; Y2) + I(X2; Y2|X1) − 2δ(ε)
= I(X ; Y2) − 2δ(ε),

R2 < I(W ; Y2|X) − δ(ε).

APPENDIX E
PROOF OF THEOREM 3

We first extend the layer-splitting lemma (Lemma 1) to
the three-user case and show that by splitting two inputs into
two layers each and keeping one input unsplit, any rate triple
on the dominant face of RMAC(A, B, C; Y ) is achievable by
successive cancellation decoding.

The dominant face of RMAC(A, B, C; Y ) is illus-
trated in Figure 14. We label the six corner points by
IABC , IBAC , IBCA, ICBA, ICAB, IACB , corresponding to the
following six rate vectors

IABC = (I(A; Y ), I(B; Y |A), I(C; Y |A, B)),
IBAC = (I(A; Y |B), I(B; Y ), I(C; Y |B, A)),
IBCA = (I(A; Y |B, C), I(B; Y ), I(C; Y |B)),
ICBA = (I(A; Y |C, B), I(B; Y |C), I(C; Y )),
ICAB = (I(A; Y |C), I(B; Y |C, A), I(C; Y )),
IACB = (I(A; Y ), I(B; Y |A, C), I(C; Y |A)).

We partition this hexagon region into three subregions: two
triangles �(IACB, IABC , IBAC) and �(IBCA, ICBA, ICAB),
and a trapezoid � (IACB, IBAC , IBCA, ICAB). In order
to achieve each region by successive cancellation decod-
ing, we split A and B into (A1, A2) and (B1, B2)
respectively. In other words, we consider p′ of the form
p′(a1)p′(a2)p′(b1)p′(b2)p′(c) and functions a(a1, a2) and
b(b1, b2) such that p′  p(a)p(b)p(c). Let R(p′, λ), λ =
1, 2, 3, be the set of achievable rate triples (R1, R2, R3)
associated with the following layer orders (defined in a similar
manner as in Section V)

1: A1 → B1 → A2 → C → B2, (58a)

2: B1 → C → A1 → B2 → A2, (58b)

3: B1 → A1 → C → A2 → B2. (58c)
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For example, R(p′, 1) is the set of rate triples (r1, r2, r3) such
that

r1 ≤ I(A1; Y ) + I(A2; Y |A1, B1)
r2 ≤ I(B1; Y |A1) + I(B2; Y |A1, B1, A2, C)
r3 ≤ I(C; Y |A1, B1, A2). (59)

We need to show for every point in RMAC(A, B, C; Y ),
there exists some choice of p′ that achieves it. Similar to
Lemma 1, we choose the conditional pmfs p(a1|a) and p(b1|b)
as erasure channels with erasure probabilities α and β respec-
tively. Then the rate expressions (59) can be further simplified
as

r1 = (1 − α)(1 − β)I(A; Y ) + α(1 − β)I(A; Y |B)
+ βI(A; Y ),

r2 = (1 − α)(1 − β)I(B; Y |A) + α(1 − β)I(B; Y )
+ βI(B; Y |A, C),

r3 = (1 − α)(1 − β)I(C; Y |A, B) + α(1 − β)I(C; Y |B, A)
+ βI(C; Y |A).

In other words, letting r := (r1, r2, r3), the achievable rate
region R(α, β, λ) for λ = 1 is the set of rate vectors r such
that

r ≤ (1 − α)(1 − β)IABC + α(1 − β)IBAC + βIACB.

This region covers every point in the triangle �(IACB,
IABC , IBAC) by varying α, β ∈ [0, 1]. Similarly, the achiev-
able rate region R(α, β, λ) for λ = 2 is the set of rate vectors
r such that

r ≤ (1 − α)βICAB + αβICBA + (1 − β)IBCA.

This region covers every point in the triangle
�(IBCA, ICBA, ICAB) by varying α, β ∈ [0, 1]. For
layer order λ = 3, the achievable rate region R(α, β, λ) is
given by

r ≤ (1 − α)(1 − β)IBAC + (1 − α)βIACB + α(1 − β)IBCA

+ αβICAB .

Note that for each fixed β, the trajectory of the achievable
rate points when varying α from 0 to 1 is a line segment that
is parallel to the two sides (IACB, ICAB) and (IBAC , IBCA).
By further varying β from 0 to 1, this layer order achieves
every point in the trapezoid � (IACB, IBAC , IBCA, ICAB).

Lemma 6 (Layer Splitting for a 3-User MAC [18]): For a
3-user MAC p(y|a, b, c), the achievable rate region for input
pmf p = p(a)p(b)p(c) can be equivalently expressed as

RMAC(A, B, C; Y ) =
⋃

p′�p

3⋃
λ=1

R(p′, λ).

where the layer orders λ = 1, 2, 3 are given in (58). Moreover,
let p(a1|a) and p(b1|b) be two erasure channels with erasure
probabilities α and β respectively. Then,

RMAC(A, B, C; Y ) =
⋃

α∈[0,1],β∈[0,1]

3⋃
λ=1

R(α, β, λ). (60)

Fig. 14. Achievable rate region of the three-user MAC p(y|a, b, c).

In order to express the 4-dimensional auxiliary region (31),
we split S into three layers (S1, S2, S3) and T, V into two
layers each (T1, T2) and (V1, V2). At receiver 1, we consider
layer orders λ1 given by

1: S1 → T1 → S2 → S3 → U → T2,

2: T1 → U → S1 → T2 → S2 → S3,

3: T1 → S1 → U → S2 → S3 → T2,

4: S1 → S2 → T1 → S3 → U → T2,

5: T1 → U → S1 → S2 → T2 → S3,

6: T1 → S1 → S2 → U → S3 → T2.

Let p′ be the pmf p(s1)p(s2)p(s3)p(t1)p(t2)p(u)p(v1)p(v2)
along with s(s1, s2, s3), t(t1, t2), v(v1, v2). Let R1(p′, λ1) be
the achievable rate region at receiver 1 for the layer order
λ1 ∈ [6]. For example, R1(p′, 1) is the set of rate quadruples
(R10, R11, R20, R22) such that

R10 ≤ I(S1; Y1) + I(S2; Y1|S1, T1) + I(S3; Y1|S1, T1, S2),
R20 ≤ I(U ; Y1|S1, T1, S2, S3),
R11 ≤ I(T1; Y1|S1) + I(T2; Y1|S1, T1, S2, S3, U).

At receiver 2, we consider layer orders λ2 = 7, 8, . . . , 12,
which are obtained from λ1 = 1, 2, . . . , 6, respectively,
by replacing T1 by V1 and T2 by V2. For example, the layer
order λ2 = 7 is obtained from the layer order λ1 = 1 as

7: S1 → V1 → S2 → S3 → U → V2.

Let R2(p′, λ2) be the achievable rate region at receiver 2 for
the layer order λ2 = 7, 8, . . . , 12. For example, R2(p′, 7) is
the set of rate quadruples (R10, R11, R20, R22) such that

R10 ≤ I(S1; Y2) + I(S2; Y2|S1, V1) + I(S3; Y2|S1, V1, S2),
R20 ≤ I(U ; Y2|S1, V1, S2, S3),
R22 ≤ I(V1; Y2|S1) + I(V2; Y2|S1, V1, S2, S3, U).
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Lemma 7: Let p denote the pmf p(s)p(t)p(u)p(v) along
with functions x(s, t) and w(u, v). Then

R1,MAC(p) ∩ R2,MAC(p)
= ∪p′�p

[(
∪3

λ1=1 ∪12
λ2=10 [R1(p′, λ1) ∩ R2(p′, λ2)]

)
∪
(
∪6

λ1=4 ∪9
λ2=7 [R1(p′, λ1) ∩ R2(p′, λ2)]

)]
. (61)

Proof: By Lemma 6, the target rate region can be equiv-
alently expressed as

R1,MAC(p) ∩ R2,MAC(p)

=
(
∪α′,β∈[0,1] ∪3

λ̃1=1
R1(α′, β, λ̃1)

)
∩
(
∪α′′,γ∈[0,1] ∪6

λ̃2=4
R2(α′′, γ, λ̃2)

)
=∪α′,α′′,β,γ∈[0,1]∪3

λ̃1=1
∪6

λ̃2=4
[R1(α′, β, λ̃1)∩R2(α′′, γ, λ̃2)]

for some erasure channels p(s′1|s), p(s′′1 |s), p(t1|t), p(v1|v)
with erasure probabilities α′, α′′, β, γ, respectively, and the
layer orders are

1: S′
1 → T1 → S′

2 → U → T2,

2: T1 → U → S′
1 → T2 → S′

2,

3: T1 → S′
1 → U → S′

2 → T2,

4: S′′
1 → V1 → S′′

2 → U → V2,

5: V1 → U → S′′
1 → V2 → S′′

2 ,

6: V1 → S′′
1 → U → S′′

2 → V2.

Now following similar steps to the proof of Proposition 2,
we can merge (S′

1, S
′
2) and (S′′

1 , S′′
2 ) into (S1, S2, S3) as

follows. When α′ > α′′, the channel p(s′1|s) is degraded
with respect to p(s′′1 |s). We assume without loss of generality
that S → S′′

1 → S′
1 form a Markov chain. By the functional

representation lemma (twice), for p(s′1|s′′1), there exists an S2

independent of S′
1 such that S′′

1 = f(S′
1, S2); for p(s′′1 |s),

there exists an S3 independent of (S2, S
′
1) such that S =

g(S′′
1 , S3) = g(f(S′

1, S2), S3) � s(S′
1, S2, S3). Renaming

S1 � S′
1 and plugging S′′

1 = f(S1, S2), the rate region
R1(α′, β, λ̃1), λ̃1 = 1, 2, 3, becomes R1(p′, λ1), λ1 = 1, 2, 3,
respectively. The rate region R2(α′′, γ, λ̃2), λ̃2 = 4, 5, 6,
becomes R2(p′, λ2), λ2 = 10, 11, 12, respectively. Thus,
we have

∪3
λ̃1=1

∪6
λ̃2=4

[R1(α′, β, λ̃1) ∩ R2(α′′, γ, λ̃2)]

= ∪3
λ1=1 ∪12

λ2=10 [R1(p′, λ1) ∩ R2(p′, λ2)].

When α′ ≤ α′′, we can assume that S → S′
1 → S′′

1

form a Markov chain. Following similar steps, the rate region
R1(α′, β, λ̃1), λ̃1 = 1, 2, 3, becomes R1(p′, λ1), λ1 = 4, 5, 6,
respectively. The rate region R2(α′′, γ, λ̃2), λ̃2 = 4, 5, 6,
becomes R2(p′, λ2), λ2 = 7, 8, 9, respectively. Thus, we have

∪3
λ̃1=1

∪6
λ̃2=4

[R1(α′, β, λ̃1) ∩ R2(α′′, γ, λ̃2)]

= ∪6
λ1=4 ∪9

λ2=7 [R1(p′, λ1) ∩ R2(p′, λ2)].

�
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