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Generalized Lexicographic Products and
the Index Coding Capacity

Fatemeh Arbabjolfaei and Young-Han Kim , Fellow, IEEE

Abstract— The index coding problem studies the fundamental
limit on broadcasting multiple messages to their respective
receivers with different sets of side information that are rep-
resented by a directed graph. The generalized lexicographic
product structure in the side information graph is introduced
as a natural condition under which the corresponding index
coding problem can be decomposed into multiple interacting
subproblems, each consisting of vertices with the same adjacency
pattern with respect to other subproblems. For side information
graphs with this structure, the capacity region is characterized
in terms of the subproblem capacity regions combined in the
same product structure. The proof is based on dual uses of
random coding—one for a new multiletter characterization of
the capacity region of a general index coding problem via joint
typicality decoding and the other for a construction of a new
multiletter code of matching rates from a single-letter code via
joint typicality encoding. Several special cases are discussed that
recover and strengthen known structural properties of the index
coding capacity region.

Index Terms— Capacity region, broadcast rate, directed graph,
random coding, multiletter characterization.

I. INTRODUCTION

INDEX coding is a canonical problem in network infor-
mation theory, in which a server broadcasts a tuple of n

messages xn = (x1, . . . , xn), xi ∈ {0, 1}ti, to n receivers
by transmitting the fewest number of bits possible over a
noiseless broadcast channel (see Fig. 1). Receiver i ∈ [n] :=
{1, 2, . . . , n} is interested in message xi and has a set of
other messages x(Ai) := (xj , j ∈ Ai), Ai ⊆ [n] \ {i},
as side information. The side information sets A1, . . . , An

are known to all communicating parties. We represent the
side information sets compactly by a sequence (i|Ai), i ∈
[n]. For example, the 3-message index coding problem with
A1 = {2, 3}, A2 = {1}, and A3 = {1, 2} is represented as
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Fig. 1. The index coding problem.

Fig. 2. The graph representation for the index coding problem with A1 =
{2, 3}, A2 = {1}, and A3 = {1, 2}.

(1|2, 3), (2|1), (3|1, 2). Each index coding problem can be also
uniquely specified by a (finite, simple) directed graph with n
vertices, referred to as the side information graph. Each vertex
of the side information graph G = (V,E) corresponds to a
receiver (and its desired message) and there is a directed edge
j → i if and only if (iff) receiver i knows message xj as side
information, i.e., j ∈ Ai (see Fig. 2). Throughout the paper,
we identify an instance of the index coding problem with
its side information graph G and often write “index coding
problem G.”

We formulate the index coding problem more precisely by
a (t1, . . . , tn, r) index code that consists of

• an encoder φ :
∏

j∈[n]{0, 1}tj → {0, 1}r that maps the
message n-tuple xn to an r-bit sequence y and

• n decoders, where the decoder at receiver i ∈ [n], ψi :
{0, 1}r ×

∏
j∈Ai

{0, 1}tj → {0, 1}ti , maps the received
sequence y and the side information x(Ai) back to xi.

Thus, for every xn ∈
∏

j∈[n]{0, 1}tj ,

ψi(φ(xn), x(Ai)) = xi, i ∈ [n]. (1)

Sometimes a (t1, . . . , tn, r) code will be written in short as a
(t, r) code and a (t, . . . , t, r) code will be written in short as
a (t, r) code.
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A rate tuple R = (R1, . . . , Rn) is said to be achievable for
the index coding problem G if there exists a (t, r) index code
such that

Ri ≤
ti
r
, i ∈ [n],

or equivalently, in vector notation,

R ≤ t
r
.

Here and henceforth, we write a ≤ b for vectors a =
(a1, . . . , an) and b = (b1, . . . , bn) of the same length n iff
ai ≤ bi, i ∈ [n]. The capacity region C (G) of the index coding
problem G is defined as the closure of the set of achievable
rate tuples. The symmetric capacity (or the capacity in short)
of the index coding problem G is defined as

Csym(G) = max{R : (R, . . . , R) ∈ C (G)}.

The reciprocal of the symmetric capacity, β(G) = 1/
Csym(G), is referred to as the broadcast rate.

Remark 1. The achievability of a given rate tuple can be
defined alternatively by relaxing the decoding condition in (1)
as

lim
r→∞P{ψi(φ(Xn), X(Ai)) �= Xi, i ∈ [n]} = 0,

where X1, . . . , Xn are distributed independently and uni-
formly at random. The corresponding vanishing-error capacity
region can be shown [1] (see also [2, Problem 8.11]) to
be identical to the zero-error capacity region defined earlier,
which holds in general for any single-sender network. This
identity was also established in [3], [4] in the context of index
coding and single-sender network coding.

The problem of broadcasting to multiple receivers with
different side information traces back to the work by Celebiler
and Stette [5], Willems et al. [6] and Wyner et al. [7],
Yeung [8], and Birk and Kol [9], [10]. The current problem
formulation is due to the last. This problem has been shown
to be closely related to many other important problems in
network information theory such as network coding [11]–[13],
locally recoverable distributed storage [14]–[16], guessing
games on directed graphs [11], [16], [17], and zero-error
capacity of channels [18]. In addition, index coding has its
own applications in diverse areas ranging from satellite com-
munication [5]–[10] and multimedia distribution [19] to inter-
ference management [20] and coded caching [21], [22]. Due
to this significance, the index coding problem has been studied
extensively over the past two decades. We refer the reader to
the dissertations of El Rouayheb [23], Blasiak [24], and the
first author [25], a survey article by Byrne and Calderini [26],
and a recent monograph by the authors [27].

The main information-theoretic question in studying the
index coding problem is to characterize the capacity region
in a computable expression. There are several inner and
outer bounds on the capacity region that are tight for several
interesting special cases, but the capacity region of a general
n-message index coding problem is open (that is, no com-
putable characterization is known). So far the capacity region
has been characterized for all index coding problems with

Fig. 3. Side information graphs with (a) no interaction, (b) one-way
interaction, and (c) complete two-way interaction among the two parts (white
and gray).

Fig. 4. (a) The lexicographic product G0 ◦G1 of (b) the 3-vertex graph G0

and (c) the 2-vertex graph G1.

n ≤ 5 messages [28]. For n ≥ 6, the capacity region is not
known in general.

For some cases, however, the side information can be
decomposed into subgraphs with some connectivity (interac-
tion) pattern, and this structure can be used to characterize the
capacity region in terms of those of the subproblems. Consider
the three side information graphs illustrated in Fig. 3, in which
each graph has two parts and the interaction between them is
none, one-way, and complete two-way. These union structures
were investigated earlier in [29]–[31], and it was shown
that the capacity region of a given index coding problem is
characterized as the “sum” of the subproblem capacity regions
for the first two cases [30], [31], and as the “maximum” of
the subproblem capacity regions for the third case [31]; see
Sections III-A through III-C for details.

As another example, consider the side information graph
in Fig. 4(a), which can be generated by replacing each
vertex of the graph in Fig. 4(b) by the graph in Fig. 4(c).
This lexicographic product structure was investigated in [29].
Although the capacity in this case was not characterized in
terms of those of the subproblems, a “product” of the capac-
ities of the subproblems was shown to be a nontrivial lower
bound on the capacity, and this lower bound was utilized to
establish a strong separation result between different capacity
bounds [29].

This paper identifies the generalized lexicographic product
structure as a natural decomposition of the side information
graph into subgraphs, which includes the aforementioned
union and product structures studied in [29]–[31] as simple
special cases. The main contribution, presented in Theorem 1
in the next section, shows that the capacity region of a
generalized lexicographic product has a natural lexicographic
product structure itself, and can be characterized in terms
of the subgraph capacity regions as well as the capacity
region of the connectivity graph. Although this generalized
lexicographic product structure is rather special, its relaxation
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in Corollary 1 provides straightforward inner and outer bounds
on the capacity region for general side information graphs.

The proof of Theorem 1 uses standard Shannon-theoretic
arguments. The main challenge is the proof of the converse,
which relies on two key ideas. The first idea, Theorem 2, is a
construction of an index code based on Shannon’s random
coding and joint typicality decoding, the achievable rate region
of which is characterized as a multiletter expression by the
packing lemma. The second idea, Lemma 2, is a construc-
tion of a new multiletter index code with relaxed decoding
conditions from a single-letter index code, which is based on
random coding and joint typicality encoding. The achievable
rate region of this code is characterized by the covering lemma.
The converse proof matches the corresponding rate regions
from the two ideas carefully to establish the desired structure
of the capacity region.

The rest of the paper is organized as follows. Section II
introduces the generalized lexicographic product of graphs and
presents the capacity region of a generalized lexicographic
product in terms of those of the subgraphs (Theorem 1).
Section III presents several examples and special cases of
Theorem 1 and its relaxation (Corollary 1). Section IV estab-
lishes the Shannon-theoretic multiletter characterization of
the capacity region, which may be of independent interest.
Section V presents the proof of Theorem 1. Section VI
concludes the paper with a few remarks on applications of the
main result. Technical proofs used in the proof of the converse
are relegated to the Appendices.

II. MAIN RESULT

In this section, we first define the generalized lexico-
graphic product of graphs and then state the main theorem of
the paper.

A. Generalized Lexicographic Product of Graphs

Consider the following graph product, first considered by
Schwenk [32] in the context of spectral graph theory.

Definition 1 (Generalized lexicographic product [32], [33]).
Let G0 = (V (G0), E(G0)) be a directed graph on m vertices
and let Gi = (V (Gi), E(Gi)), i ∈ [m], be directed graphs on
disjoint sets of vertices, i.e., V (Gi) ∩ V (Gj) = ∅, i �= j. The
generalized lexicographic product G = G0 ◦ (G1, . . . , Gm) is
defined by the set of vertices V (G) = ∪i∈[m]V (Gi) and the
set of edges E(G) consisting of directed edges (i, j) such that

i, j ∈ V (Gk) for some k and (i, j) ∈ E(Gk)
or

i ∈ V (Gk), j ∈ V (Gl) for some k �= l and (k, l) ∈ E(G0).

In other words, vertex i ∈ V (G0) is replaced by a copy of
Gi and every vertex in the copy of Gk is connected to every
vertex in the copy of Gl according to E(G0); see Fig. 5 for
an illustration.

Remark 2. This notion of generalized lexicographic product
extends that of lexicographic product G0◦G1 [34], [35], which

Fig. 5. (a) A 6-vertex graph that is the generalized lexicographic product
G0 ◦ (G1, G2, G3), (b) the 3-vertex graph G0, (c) the 2-vertex graph G1,
(d) the 2-vertex graph G2, and (e) the 2-vertex graph G3.

is a graph with vertex set V (G0) × V (G1) and (i1, i2) is
connected to (j1, j2) iff

(i1, j1) ∈ E(G0) or (i1 = j1 and (i2, j2) ∈ E(G1)) .

By relabeling the vertices, G0 ◦G1 = G0 ◦ (G(1)
1 , . . . , G

(m)
1 ),

where G(1)
1 , . . . , G

(m)
1 are copies of G1 over disjoint vertex

sets.

Remark 3. To verify whether a graph G = ([n], E) is a
generalized lexicographic product of smaller graphs, it suffices
to go over all subsets of vertices S ⊆ [n] with 2 ≤ |S| ≤ n−1
and check if the vertices in S have the same adjacency pattern
with respect to all the vertices in [n] \ S.

B. Capacity Region of a Generalized Lexicographic Product

The main contribution of the paper is the following charac-
terization of the capacity region of the index coding problem
G0 ◦ (G1, . . . , Gm) in terms of the capacity regions of smaller
problems G0, G1, . . . , Gm.

Theorem 1. Let G0 = ([m], E) be the side information graph
of an index coding problem with m messages and capacity
region C0. Let G1, . . . , Gm be the side information graphs of
m index coding problems with capacity regions C1, . . . ,Cm,
respectively. Then the capacity region of the index coding
problem with side information graph G = G0 ◦ (G1, . . . , Gm)
is

C (G) = C0 ◦ (C1, . . . ,Cm)
:=

{
(ρ1R1, . . . , ρmRm) : ρ ∈ C0, Ri ∈ Ci, i ∈ [m]

}
(2)

and its broadcast rate is

β(G) = min
R:(R,...,R)∈C (G)

1
R
. (3)

Remark 4. Since C0,C1, . . . ,Cm are compact, so is the RHS
of (2).

Remark 5. If C0,C1, . . . ,Cm are polytopes of the form Ci =
{R : TiR ≤ 1 = (1, . . . , 1)T }, i = 0, 1, . . . ,m, then C is
also a polytope characterized by Fourier–Motzkin elimination
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of m variables ρ = (ρ1, . . . , ρm) from the linear inequalities

T0ρ ≤ 1,

TiRi ≤ ρi1, i ∈ [m].

Remark 6. Theorem 1 can be specialized to the broadcast
rate of G = G0 ◦ (G1, . . . , Gm). If β = (β(G1), . . . , β(Gm)),
then

β(G) =
1

C0(β)
≤ max

i∈[m]
β(G0)β(Gi),

where C0(β) = max{R : Rβ ∈ C0}.

The following sandwich argument extends the application of
Theorem 1 beyond index coding instances with side informa-
tion graph in the form of a generalized lexicographic product.

Corollary 1. For i = 0, 1, . . . ,m, let G�
i and G��

i be side
information graphs of index coding problems with capacity
regions C �

i and C ��
i , respectively, such that V (G�

i) = V (G��
i )

and E(G�
i) ⊆ E(G��

i ). Suppose that |V (G�
0)| = |V (G��

0 )| = m
and let

G� = G�
0 ◦ (G�

1, . . . , G
�
m)

and

G�� = G��
0 ◦ (G��

1 , . . . , G
��
m).

Then the capacity region of any index coding problem G such
that

V (G) = V (G�) = V (G��)

and

E(G�) ⊆ E(G) ⊆ E(G��)

is bounded as

C �
0 ◦ (C �

1, . . . ,C
�
m) = C (G�)

⊆ C (G)
⊆ C (G��) = C ��

0 ◦ (C ��
1 , . . . ,C

��
m).

In particular, if C �
i = C ��

i = Ci, i = 0, 1, . . . ,m, then

C (G) = C (G�) = C (G��) = C0 ◦ (C1, . . . ,Cm).

Remark 7. For any side information graph G, the bounding
graphsG� andG�� can be easily constructed by considering any
vertex subset S, say [k], with 2 ≤ |S| = k ≤ n−1, and taking
the intersection and union of the neighbors from/to S to/from
[n]\S, respectively. Now that the adjacency pattern is the same
for all vertices in S, we can identify G�

0 and G��
0 by replacing

G|S with a single vertex and keeping the other vertices. The
resulting G� and G�� are generalized lexicographic products of
n− k + 1 graphs.

Remark 8. An index coding problem is said to be critical
if removal of any of the edges of its side information graph
strictly reduces the capacity region [30], [31]. Note that in
Corollary 1, C �

i = C ��
i , i = 0, 1, . . . ,m, implies that the index

coding problem G is not critical, as those edges of the side
information graph G that are not in G� can be removed from G

Fig. 6. (a) A 2-vertex graph with no edge, (b) a 2-vertex graph with one
edge, and (c) a 2-vertex graph with two edges.

without reducing the capacity region. Thus, Corollary 1 pro-
vides a necessary condition for criticality of a side information
graph (see [27] for other necessary conditions).

III. EXAMPLES

A. No Interaction Between Partitions

Consider the side information graph G depicted in Fig. 3(a),
which has two noninteracting parts G1 and G2, i.e., there
is no edge between G1 and G2. Then G can be viewed as
G0 ◦ (G1, G2), where G0 is the two-vertex graph in Fig. 6(a).
Since the capacity region of G0 is {(R1, R2) : R1 +R2 ≤ 1},
by Theorem 1,

C (G) =
{
(ρR1, (1 − ρ)R2) : R1 ∈ C (G1),R2 ∈ C (G2),

ρ ∈ [0, 1]
}
. (4)

Moreover, the maximum symmetric rate in C (G) is attained
when ρ/β(G1) = (1 − ρ)/β(G2), or equivalently, ρ =
β(G1)/(β(G1) + β(G2)), which implies

β(G) = β(G1) + β(G2). (5)

More generally, consider a side information graph G that
consists of m vertex-induced subgraphs G1, . . . , Gm with
no edges among them. Then G can be viewed as G0 ◦
(G1, . . . , Gm), where G0 is a graph with m vertices and no
edge. By Theorem 1 (or by applying (4) and (5) inductively),

C (G) =
{

(ρ1R1, . . . , ρmRm) : Ri ∈ C (Gi), i ∈ [m],

∑
i∈[m]

ρi ≤ 1
}

and

β(G) =
∑

i∈[m]

β(Gi).

In other words, when G is partitioned into noninteracting parts
G1, . . . , Gm, the capacity region of G is achieved by time
division among the optimal coding schemes for subproblems
G1, . . . , Gm [30].

B. One-way Interaction Between Partitions

Consider the side information graph G depicted in Fig. 3(b),
which has one-way interaction between its two parts G1 and
G2, i.e., there is no edge from G2 to G1. Let G�

0 and G��
0 be the

two graphs on two vertices as depicted in Figs. 6(a) and (b),
respectively. Then, C (G�

0) = C (G��
0 ) = {(R1, R2) : R1 +

R2 ≤ 1} and E(G�
0◦(G1, G2)) ⊆ E(G) ⊆ E(G��

0 ◦(G1, G2)).
Thus, by Corollary 1,

C (G) =
{
(ρR1, (1 − ρ)R2) : R1 ∈ C (G1),R2 ∈ C (G2),

ρ ∈ [0, 1]
}
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and

β(G) = β(G1) + β(G2).

More generally, suppose that the graph G consists of m
vertex-induced subgraphs G1, . . . , Gm such that there exists
no edge from Gj to Gi for i < j. Let G�

0 and G��
0

be directed graphs with m vertices such that E(G�
0) =

∅ and E(G��
0 ) = {(i, j) : i < j}. Note that C (G�

0) =
C (G��

0 ) = {(R1, . . . , Rm) :
∑

i∈[m]Ri ≤ 1}. Since E(G�
0 ◦

(G1, . . . , Gm)) ⊆ E(G) ⊆ E(G��
0 ◦ (G1, . . . , Gm)), by Corol-

lary 1,

C (G) =
{

(ρ1R1, . . . , ρmRm) : Ri ∈ C (Gi), i ∈ [m],

∑
i∈[m]

ρi ≤ 1
}

and

β(G) =
∑

i∈[m]

β(Gi).

In words, the capacity region of a graph with one-way interac-
tion among its parts is no larger than the capacity region of a
graph with noninteracting parts. Thus the edges connecting the
parts G1, . . . , Gm in one way, or equivalently by the Farkas
lemma [36, Th. 2.2], the edges that are not on a directed
cycle can be removed without affecting the capacity region
(cf. Remark 8) and the graph is not critical [30].

C. Complete Two-way Interaction Between Partitions

Consider the side information graph G in Fig. 3(c). Since
there are two-way edges between every vertex in G1 and every
vertex in G2, G can be written as G0 ◦ (G1, G2), where G0

is the complete graph with two vertices depicted in Fig. 6(c).
More generally, suppose that G0 is a complete graph with m
vertices. Then its capacity region is characterized as C (G0) =
{(R1, . . . , Rm) : Ri ≤ 1, i ∈ [m]}. Thus, by Theorem 1,
the capacity region of G = G0 ◦ (G1, . . . , Gm) is

C (G) =
{
(R1, . . . ,Rm) : Ri ∈ C (Gi), i ∈ [m]

}
. (6)

Moreover, (6) implies

max{R : (R, . . . , R) ∈ C (G)}
= min

i∈[m]
max{R : (R, . . . , R) ∈ Ci}

= min
i∈[m]

1
β(Gi)

and thus

β(G) = max
i∈[m]

β(Gi).

In words, the capacity region of a graph with complete
two-way interaction among its parts is achieved by simul-
taneously using the optimal coding schemes for individual
parts [31].

D. Lexicographic Products

We revisit the side information graph G in Fig. 4(a), which
is the lexicographic product of the two graphs in Fig. 4(b)
and Fig. 4(c). By Theorem 1, the capacity region of problem
G0 ◦G1 is

C (G) =
{
(ρ1R1, . . . , ρmRm) : ρ ∈ C (G0),

Ri ∈ C (G1), i ∈ [m]
}
,

which implies

β(G0 ◦G1) = β(G0)β(G1). (7)

In words, the broadcast rate is multiplicative under the lex-
icographic product of index coding side information graphs.
We note that one direction (≤) in (7) was established earlier
in [29].

E. Beyond Generalized Lexicographic Products

In Section III-B, we have seen a simple application of
Corollary 1. We now present a more substantial example.
Consider the side information graph depicted in Fig. 7(a),
which cannot be viewed as the generalized lexicographic
product of smaller graphs. Let G� and G�� be the graphs
depicted in Figs. 7(b) and (c), respectively. Since the graph
G satisfies V (G) = V (G�) = V (G��) and E(G�) ⊆ E(G) ⊆
E(G��), its capacity region is sandwiched between the capacity
regions C (G�) and C (G��). Now the graphs G� and G��

are generalized lexicographic products of smaller graphs as
G� = G�

0 ◦ (G�
1, G

�
2, G

�
3) and G�� = G��

0 ◦ (G��
1 , G

��
2 , G

��
3 ), where

G�
0, G��

0 , G�
1 = G��

1 , G�
2, G��

2 , and G�
3 = G��

3 are the graphs
depicted in Fig. 8. Note that for each i = 0, 1, 2, 3, V (G�

i) =
V (G��

i ) and E(G�
i) ⊆ E(G��

i ). Furthermore, the capac-
ity regions of problems G�

i and G��
i can be shown to be

identical as

C0 = C (G�
0) = C (G��

0 ) =

{(ρa, ρb, ρc) : ρa + ρb ≤ 1, ρb + ρc ≤ 1},

C1 = C (G�
1) = C (G��

1 ) = {R1 : R1 ≤ 1},

C2 = C (G�
2) = C (G��

2 ) = {(R2, R3) : R2 +R3 ≤ 1},

C3 = C (G�
3) = C (G��

3 ) = {(R4, R5) : R4 +R5 ≤ 1}.

Hence, by Corollary 1, the capacity region C (G) of index
coding problem G is equal to C (G�) = C (G��), which is the
set of all rate tuples (R1, R2, R3, R4, R5) such that

R1 ≤ ρa,

R2 +R3 ≤ ρb,

R4 +R5 ≤ ρc

for some (ρa, ρb, ρc) such that ρa + ρb ≤ 1 and ρb + ρc ≤ 1.
By Remark 5, this region simplifies to the set of (R1, . . . , R5)
such that

R1 +R2 +R3 ≤ 1,

R2 +R3 +R4 +R5 ≤ 1.
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Fig. 7. (a) The 5-vertex graph G is sandwiched between (b) G′ = G′
0 ◦

(G′
1, G′

2, G′
3) and (c) G′′ = G′′

0 ◦ (G′′
1 , G′′

2 , G′′
3 ).

Fig. 8. (a) The 3-vertex graph G′
0, (b) the 3-vertex graph G′′

0 , (c) the 1-vertex
graph G′

1 = G′′
1 , (d) the 2-vertex graph G′

2, (e) the 2-vertex graph G′′
2 , and

(f) the 2-vertex graph G′
3 = G′′

3 .

IV. A MULTILETTER CHARACTERIZATION OF THE

INDEX CODING CAPACITY REGION

Alon, Hassidim, Lubetzky, Stav, and Weinstein [37] estab-
lished a graph-theoretic characterization of the broadcast rate
as the limit of multiletter expressions involving the chromatic
number of the confusion graph [37], [38]. This characterization
was later strengthened in [39] by replacing the chromatic num-
ber with the fractional chromatic number and also extended
to the capacity region.

In this section, we use Shannon’s random coding idea [40]
to establish the following information theoretic multiletter
characterization of the capacity region of the index coding
problem.

Theorem 2. The capacity region of the index coding problem
(i|Ai), i ∈ [n], with side information graph G is the closure
of

∞⋃
r=1

Cr(G),

where Cr(G) is the set of all rate tuples (R1, . . . , Rn) satis-
fying

Ri ≤
1
r
I(Ui;V |U(Ai)), i ∈ [n],

for some pmf p(u1) · · · p(un) and function f : U1 × · · · ×
Un → V that maps the n-tuple (U1, . . . , Un) to V such that
the cardinality of the auxiliary random variable V is upper
bounded by 2r.

In Theorem 2, I(Ui;V |U(Ai)) denotes the conditional
mutual information [40], [41] between Ui and V given U(Ai).
Since U1, . . . , Un are mutually independent,

I(Ui;V |U(Ai)) = I(Ui;V, U(Ai)), i ∈ [n].

In the following, we prove the theorem in two steps.

A. Proof of Achievability

We follow the standard arguments in the random coding
proof of Shannon’s channel coding theorem using the notion
of typicality [2], [40], [41]. Here and henceforth, we define the
set of �-typical k-sequences uk = (u1, . . . , uk) with respect
to U ∼ p(u) for � ∈ (0, 1) as

T (k)
� (U) = {uk : |π(u|uk) − p(u)| ≤ �p(u) for all u ∈ U},

where

π(u|uk) =
|i : ui = u|

k
, u ∈ U ,

is the empirical pmf of uk. Elementary properties of the typical
set and typical sequences can be found in [2], [42].

Now we prove the achievability of the rate tuples in Cr for
each r = 1, 2, . . . , based on random coding. For simplicity of
presentation, we assume throughout the proof that krRi is an
integer for every i ∈ [n].

Codebook generation. Fix a pmf p(u1) · · · p(un) and a
function v = f(u1, . . . , un) under the prescribed cardinality
constraint. For each i ∈ [n], randomly and independently
generate 2krRi sequences uk

i (xi), xi ∈ [2krRi ], each according
to

∏k
j=1 pUi(uij). These codewords constitute the codebook,

which is shared among all communicating parties.
Encoding. To communicate the message tuple (x1, . . . , xn),

we transmit y = vk(uk
1(x1), . . . , uk

n(xn)) ∈ [2kr], where vj =
f(u1j(x1), . . . , unj(xn)), j ∈ [k].

Decoding. We use joint typicality decoding (see, for exam-
ple, [2, Sec. 3.1]). Let vk be the received sequence and
uk

J(x(J)) = (uk
j (xj), j ∈ J). Decoder i ∈ [n] declares that x̂i

is sent if it is the unique message such that

(uk
i (x̂i), uk

Ai
(x(Ai)), vk) ∈ T (k)

� .

Otherwise it declares an error.
Analysis of the probability of error. By the symmetry of

codebook generation, the probability of error averaged over
the messages and the random codebook generation satisfies

P(E) = P{(X1, . . . , Xn) �= (X̂1, . . . , X̂n)}
= P{E |(X1, . . . , Xn) = (1, . . . , 1)}.

Hence, we assume without loss of generality that Xi = 1,
i ∈ [n], is sent, and suppress the condition {(X1, . . . , Xn) =
(1, . . . , 1)} in the subsequent probability expressions for
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brevity. Let P(Ei) be the probability of error for decoder i.
Then, by the union of events bound

P(E) ≤
∑
i∈[n]

P(Ei). (8)

Note that decoder i makes an error iff one or more of the
following events occur:

Ei1 = {(Uk
i (1), Uk

Ai
((1, . . . , 1)), V k) �∈ T (k)

� },
Ei2 = {(Uk

i (xi), Uk
Ai

((1, . . . , 1)), V k) ∈ T (k)
�

for some xi �= 1}.

Thus, by the union of events bound, the probability of error
for decoder i is upper bounded as

P(Ei) ≤ P(Ei1) + P(Ei2).

By the law of large numbers, P(Ei1) tends to zero as k → ∞.
If xi �= 1, Uk

i (xi) is independent of V k and Uk(Ai). Hence,
by the packing lemma [2, Lemma 3.1], P(Ei2) tends to zero
as k → ∞ if

rRi < I(Ui;V, U(Ai)) − δ(�) = I(Ui;V |U(Ai)) − δ(�),
(9)

where δ(�) tends to zero as �→ 0 and the last identity follows
since Ui and U(Ai) are independent. Therefore, by (8), if the
specified rate constraints in (9) are satisfied simultaneously
for all messages, the probability of error P(E) averaged over
messages and codebooks tends to zero as k → ∞, and there
must exist a sequence of (�krR1�, . . . , �krRn�, kr) index
codes such that the probability of error averaged over the
messages tends to zero as k → ∞. Letting � → 0 shows that
any rate tuple (R1, . . . , Rn) ∈ Cr is achievable with vanishing
probability of error. By Remark 1, this error probability can
be made to be exactly zero without sacrificing the rates and
thus Cr is contained in the capacity region. This completes
the proof of achievability.

B. Proof of the Converse

We show that any achievable rate tuple (R1, . . . , Rn) lies
in some Cr. First note that for any (t1, . . . , tn, r) index code,

H(Xi |Y,X(Ai)) = 0, i ∈ [n].

Hence,

rRi ≤ ti = H(Xi) = I(Xi;Y |X(Ai)), i ∈ [n].

By identifying Ui = Xi, i ∈ [n], and V = Y , the cardinalities
of which are all upper bounded by 2r, we can conclude that

Ri ≤
1
r
I(Ui;V |U(Ai)), i ∈ [n],

for some p(u1) · · · p(un) and v = f(u1, . . . , un) such that the
cardinalities are bounded by 2r. This completes the proof of
the converse.

V. PROOF OF THEOREM 1

In this section, we use the information theoretic characteri-
zation of index coding capacity region in Theorem 2 to prove
the main result of the paper.

Fig. 9. Construction of an index code for index coding problem G0 ◦
(G1, . . . , Gm) by concatenating the index codes for problems G1, . . . , Gm

as the inner codes and the index code for problem G0 as the outer code. The
message tuple x = (x1, . . . ,xm) is encoded by index codes for G1, . . . , Gm

part by part. The outputs y1, . . . , ym are then encoded by the index code
for G0.

A. Proof of Achievability

The proof of achievability extends the arguments in [29]
and uses the simple construction of an index code for G =
G0 ◦ (G1, . . . , Gm) from index codes for subproblems as
illustrated in Fig. 9. To be more precise, consider any rate
tuple (ρ1R1, . . . , ρmRm), where Ri ∈ Ci, i ∈ [m], and
(ρ1, . . . , ρm) ∈ C0. Let � > 0. Then, by the definition of the
capacity region, there exists a (�(ρ1−�)r�, . . . , �(ρm−�)r�, r)
index code for problem G0 for r sufficiently large. Also for
each i ∈ [m], there exists a (�(Ri − �1)ri�, ri) = (ti, ri)
index code for problem Gi for ri sufficiently large. Let ri =
�(ρi − �)r�, i ∈ [m]. Then, by concatenating the (ti, ri) index
codes, i ∈ [m], with (r1, . . . , rm, r) index code as shown
in Fig. 9, we can construct a code for problem G. The rate of
message i of this code is

ti

r
=
ri
r

ti

ri

=
�(ρi − �)r�

r

�(Ri − �1)ri�
ri

≥ (ρi − �)(Ri − �1), i ∈ [m].

Letting �→ 0 completes the proof.

B. Proof of the Converse

Our proof is inspired by the proof for the one-way interac-
tion in [30], but significantly extends the arguments therein.
Let Aj ⊆ V (G) denote the side information set of receiver j ∈
V (G) for the index coding problem G, and let A�

i ⊆ [m]
denote the side information set of receiver i ∈ [m] for the
index coding problem G0. In this notation, if j ∈ V (Gi)
for some i ∈ [m], then by the definition of generalized
lexicographic product, the side information set of receiver j
can be decomposed as

Aj =
(
Aj ∩ V (Gi)

)
∪

( ⋃
l∈A′

i

V (Gl)
)
, (10)

where the first term denotes the side information from within
the subproblem Gi and the second term denotes the side
information from other subproblems. As in Fig. 9, we write xi
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for (xj : j ∈ V (Gi)) and x for (x1, . . . ,xm). We also write
x(A�

i) for (xj : j ∈ ∪l∈A′
i
V (Gl)).

To prove the converse (C ⊆ C0 ◦ (C1, . . . ,Cm)), for any
(t1, . . . , tm, r) index code for G = G0 ◦ (G1, . . . , Gm),
we argue that the corresponding rate tuple can be factored
as

ti

r
=
si

r

ti

si
, i ∈ [m],

for some (s1, . . . , sm), so that(
s1
r
, . . . ,

sm

r

)
∈ C0, (11a)

and for any � > 0,

(1 − �)ti

si
∈ Ci, i ∈ [m]. (11b)

Consequently,

(1 − �)
(

t1

r
, . . . ,

tm

r

)
∈ C0 ◦ (C1, . . . ,Cm).

Since � > 0 is arbitrary, this would establish the desired proof
of the converse.

We now verify (11) for an appropriate (s1, . . . , sm). Let
Y = φ(X1, . . . ,Xm) ∈ {0, 1}r be the encoder output of the
given index code for independent and uniformly distributed
messages, which induces the joint distribution of the form

p(x1, . . . ,xm, y) = p(x1) · · · p(xm)p(y |x1, . . . ,xm) (12)

such that Y is a function of (X1, . . . ,Xm) and Xj is a
function of (Y,X(Aj)) for every j ∈ V (G), namely, Xj =
ψj(Y,X(Aj)), j ∈ V (G). Now let

si = I(Xi;Y |X(A�
i)), i ∈ [m],

where the mutual information is evaluated under the joint
distribution in (12). Then, by Theorem 2 (with Ui = Xi and
V = Y ), we have (11a). For (11b), we first state two lemmas,
the proofs of which are presented in Appendices A and B.

Lemma 1. For any n-message index coding problem (i|Ai),
i ∈ [n], with side information graph G, let

(φ(xn), ψ1(y, x(A1)), . . . , ψn(y, x(An)))

be the encoder and decoders of a (t1, . . . , tn, r) index code
under a relaxed decoding condition

ψi(φ(xn), x(Ai)) = xi, i ∈ J,

for some subset J ⊆ [n] of the messages. Then,

(ti : i ∈ J)
r

∈ C (G|J ).

Lemma 2. Let � > 0 and si = I(Xi;Y |X(A�
i)). Then there

exist mappings

φ�i(x
k) ∈ {0, 1}ksi/(1−�), i ∈ [m], (13a)

and

ψ�
j(wi, x

k(Aj)) ∈ {0, 1}ktj , j ∈ V (Gi), (13b)

TABLE I

THE NUMBERS OF n-MESSAGE INDEX CODING PROBLEMS
WHOSE CAPACITY REGIONS CAN BE CHARACTERIZED BY

THE DIVIDE-AND-CONQUER APPROACH BASED

ON THEOREM 1 AND COROLLARY 1

such that

ψ�
j(φ

�
i(x

k), xk(Aj)) = xk
j , i ∈ [m], j ∈ V (Gi), (13c)

for k sufficiently large.

Now we are ready to verify (11b). We first apply Lemma 2
for each i ∈ [m]. The mappings φ�i(x

k) and ψ�
j(wi, x

k(Aj)),
j ∈ V (Gi), form a (kt1, . . . , ktm, ksi/(1 − �)) index code
for G under the relaxed decoding condition that only xk

i =
(xk

j : j ∈ V (Gi)) is required to be recovered correctly.
Hence, by Lemma 1, we can conclude that (11b) holds. This
completes the proof of Theorem 1.

VI. CONCLUDING REMARKS

The generalized lexicographic product structure investigated
in this paper provides a natural method of building a larger
index coding problem from smaller problems so that the
capacity region of the larger problem can be expressed in
the same generalized lexicographic product structure from
the subproblem capacity regions. This leads to a divide-and-
conquer approach to computing the index coding capacity
region, either through direct decomposition (Theorem 1) or by
sandwiching between two generalized lexicographic products
(Corollary 1).

Since the capacity region of a general n-message index
coding problem is known for n ≤ 5, we can test this
divide-and-conquer approach for all problems with six or
less messages. Table I lists the number of all nonisomorphic
n-message index coding problems N , along with the number
of problems that are generalized lexicographic products of
smaller graphs (NGLP), the number of problems that are
sandwiched between two generalized lexicographic products
of the same capacity region (NSand), and the percentage of the
problems whose capacity regions can be characterized by this
divide-and-conquer approach. This simple approach solves
about one half of the 6-message problems without explicitly
computing any inner and outer bounds on the capacity region.

Identifying the generalized lexicographic product structure
in a general side information graph is a computationally
challenging problem (see Remarks 3 and 7). We offer the
following algorithmic questions that would shed some light
on the current line of investigation:
• Given a graph G, can we efficiently determine whether
G is a generalized lexicographic product of smaller
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graphs? Although only a very small number of graphs are
generalized lexicographic products, the capacity regions
of many other graphs can be tightly sandwiched by the
capacity regions of these graphs.

• Can we efficiently transform a graph G into a generalized
lexicographic product by adding or removing a few
edges? A recursive application of this procedure can yield
a general outer or inner bound on the capacity region.

APPENDIX A
PROOF OF LEMMA 1

We construct an index code for problem G|J by setting
xi = 0, i �∈ J , in φ(xn) and ψi, i ∈ J . For every xn ∈
Πn

i=1{0, 1}ti, define x̃n = x̃n(xn) by

x̃i =

{
xi, i ∈ J,

0, i �∈ J,

represented in the same ti bits. Note that the side information
set of receiver i ∈ J for problem G|J is Ai ∩ J . Let

φ�(x(J)) = φ(x̃n) ∈ {0, 1}r,

and

ψ�
i(y, x(Ai ∩ J)) = ψi(y, x̃(Ai)).

Then, by the given decoding condition, for all i ∈ J we have

ψ�
i(φ

�(x(J)), x(Ai ∩ J)) = ψi(φ(x̃n), x̃(Ai)) = x̃i = xi.

Hence, the mappings φ�(x(J)) and ψ�
i(y, x(Ai ∩ J)), i ∈ J ,

form a valid index code for the problem G|J . This completes
the proof of the lemma.

APPENDIX B
PROOF OF LEMMA 2

At a high level, the proof is based on random coding
for rate–distortion theory [43] and joint typicality encoding
[2, Sec. 3.6] over k copies of (X1, . . . ,Xm, Y ). For each
i ∈ [m], consider the joint distribution p(xi,x(A�

i), y) from
(12) and fix the conditional distribution p(y|x(A�

i)). For
each xk(A�

i), generate kr-bit sequences yk
i (wi|xk(A�

i)), wi ∈
[2ksi/(1−�)], each i.i.d. according to p(y|x(A�

i)). Then by the
covering lemma [2, Lemma 3.3], with high probability there
exists at least one wi such that

(xk
i , y

k
i (wi |xk(A�

i)),x
k(A�

i)) ∈ T (k)
� (Xi, Y,X(A�

i)), (14)

provided that k is sufficiently large and

si/(1 − �) > I(Xi;Y |X(A�
i)).

If there is such a wi (if there is more than one, choose one
arbitrarily), then we set

φ�i(x
k) = wi.

Note by (14) that the chosen wi is a function of xk
i and xk(A�

i)
(and thus of xk). If there is no such index, set φ�i(x

k) = 1.
We now define ψ�

j for each j ∈ V (Gi). Let

ψ�
j(wi, x

k(Aj)) = ψj(yk
i (wi |xk(A�

i)), x
k(Aj)),

where ψj is the decoding function of the given index code
for problem G that is employed k times. Suppose that the
joint typicality in (14) holds among xk

i , yk
i (wi|xk(A�

i)),
and xk(A�

i). Then by the properties of joint typicality
[2, Section 2.5], any functional relationship for them should
hold, namely

xk
j = ψj(yk

i , x
k(Aj)) = ψ�

j(φ
�
i(x

k), xk(Aj)), j ∈ V (Gi).

Therefore, as long as wi satisfying (14) is found, which
happens with high probability, the mappings φ�i and ψ�

j defined
above satisfy the desired properties in (13) with high proba-
bility. Finally, by Remark 1, we can come up with mappings
for which these properties hold for every sequence with a
negligible decrease in the rates. This completes the proof of
the lemma.

ACKNOWLEDGMENTS

The authors would like to thank the Associate Editor and
anonymous reviewers for their constructive comments, which
improved the readability of the article significantly. They
would also like to thank E. Grigorescu and M. Zhu for
pointing out an error in an earlier proof of Theorem 1 based
on the clique number of confusion graphs, and acknowledge
P. Sadeghi and J. Verstraete for helpful discussions.

REFERENCES

[1] F. M. J. Willems, “The maximal-error and average-error capacity region
of the broadcast channel are identical: A direct proof,” Probl. Control
Inf. Theory, vol. 19, no. 4, pp. 339–347, 1990.

[2] A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge,
U.K.: Cambridge Univ. Press, 2011.

[3] T. Chan and A. Grant, “On capacity regions of non-multicast networks,”
in Proc. IEEE Int. Symp. Inf. Theory, Austin, TX, USA, Jun. 2010,
pp. 2378–2382.

[4] M. Langberg and M. Effros, “Network coding: Is zero error always
possible?” in Proc. 49th Ann. Allerton Conf. Commun. Control Comput.,
Monticello, IL, USA, 2011, pp. 1478–1485.

[5] M. Celebiler and G. Stette, “On increasing the down-link capacity of a
regenerative satellite repeater in point-to-point communications,” Proc.
IEEE, vol. 66, no. 1, pp. 98–100, Jan. 1978.

[6] F. M. J. Willems, J. K. Wolf, and A. D. Wyner, “Communicating
via a processing broadcast satellite,” in Proc. IEEE/CAM Inf. Theory
Workshop, Cornell, NY, USA, Jun. 1989, p. 3_1.

[7] A. D. Wyner, J. K. Wolf, and F. M. J. Willems, “Communicating via a
processing broadcast satellite,” IEEE Trans. Inf. Theory, vol. 48, no. 6,
pp. 1243–1249, Jun. 2002.

[8] R. W. Yeung, “Multilevel diversity coding with distortion,” IEEE Trans.
Inf. Theory, vol. 41, no. 2, pp. 412–422, Mar. 1995.

[9] Y. Birk and T. Kol, “Informed-source coding-on-demand (ISCOD) over
broadcast channels,” in Proc. 17th Annu. IEEE Int. Conf. Comput.
Commun. (INFOCOM), San Francisco, CA, USA, Mar./Apr. 1998,
pp. 1257–1264.

[10] Y. Birk and T. Kol, “Coding on demand by an informed source (ISCOD)
for efficient broadcast of different supplemental data to caching clients,”
IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2825–2830, Jun. 2006.

[11] S. Riis, “Information flows, graphs and their guessing numbers,” Electr.
J. Combin., vol. 14, no. 1, pp. 1–17, 2007.

[12] S. El Rouayheb, A. Sprintson, and C. Georghiades, “On the rela-
tion between the index coding and the network coding problems,” in
Proc. IEEE Int. Symp. Inf. Theory, Toronto, ON, Canada, Jul. 2008,
pp. 1823–1827.

[13] M. Effros, S. El Rouayheb, and M. Langberg, “An equivalence between
network coding and index coding,” IEEE Trans. Inf. Theory, vol. 61,
no. 5, pp. 2478–2487, May 2015.

[14] A. Mazumdar, “On a duality between recoverable distributed storage
and index coding,” in Proc. IEEE Int. Symp. Inf. Theory, Honolulu, HI,
USA, Jun./Jul. 2014, pp. 1977–1981.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on February 15,2020 at 06:37:11 UTC from IEEE Xplore.  Restrictions apply. 



ARBABJOLFAEI AND KIM: GENERALIZED LEXICOGRAPHIC PRODUCTS AND THE INDEX CODING CAPACITY 1529

[15] K. Shanmugam and A. G. Dimakis, “Bounding multiple unicasts through
index coding and locally repairable codes,” in Proc. IEEE Int. Symp. Inf.
Theory, Honolulu, HI, USA, Jun./Jul. 2014, pp. 296–300.

[16] F. Arbabjolfaei and Y.-H. Kim, “Three stories on a two-sided coin: Index
coding, locally recoverable distributed storage, and guessing games on
graphs,” in Proc. 53rd Annu. Allerton Conf. Commun. Control Comput.,
Monticello, IL, USA, Sep./Oct. 2015, pp. 843–850.

[17] X. Yi, H. Sun, S. A. Jafar, and D. Gesbert, “TDMA is optimal for all-
unicast DoF region of TIM if and only if topology is chordal bipartite,”
IEEE Trans. Inf. Theory, vol. 64, no. 3, pp. 2065–2076, Mar. 2018.

[18] K. Shanmugam, M. Asteris, and A. G. Dimakis, “On approximating the
sum-rate for multiple-unicasts,” in Proc. IEEE Int. Symp. Inf. Theory,
Hong Kong, Jun. 2015, pp. 381–385.

[19] M. J. Neely, A. S. Tehrani, and Z. Zhang, “Dynamic index cod-
ing for wireless broadcast networks,” in Proc. 31st Annu. IEEE Int.
Conf. Comput. Commun. (INFOCOM), Orlando, FL, USA, Mar. 2012,
pp. 316–324.

[20] S. A. Jafar, “Topological interference management through index cod-
ing,” IEEE Trans. Inf. Theory, vol. 60, no. 1, pp. 529–568, Jan. 2014.

[21] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[22] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching
in wireless D2D networks,” IEEE Trans. Inf. Theory, vol. 62, no. 2,
pp. 849–869, Feb. 2016.

[23] S. Y. El Rouayheb, “Network and index coding with application to robust
and secure communications,” Ph.D. dissertation, Dept. Elect. Comput.
Eng., Texas A&M Univ., College Station, TX, USA, 2009.

[24] A. Blasiak, “A graph-theoretic approach to network coding,”
Ph.D. dissertation, Dept. Comput. Sci., Cornell Univ., Ithaca, NY, USA,
2013.

[25] F. Arbabjolfaei, “Index coding: Fundamental limits, coding schemes,
and structural properties,” Ph.D. dissertation, Dept. Elect. Comput. Eng.,
Univ. California, San Diego, La Jolla, CA, USA, 2017.

[26] E. Byrne and M. Calderini, “Index coding, network coding and broadcast
with side-information,” in Network Coding and Subspace Designs,
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