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Abstract— Building on recent development by Padakandla and
Pradhan, and by Lim, Feng, Pastore, Nazer, and Gastpar, this
paper studies the potential of structured coset coding as a
complete replacement for random coding in network information
theory. The roles of two techniques used in coset coding to
generate nonuniform codewords, namely, shaping and channel
transformation, are clarified and illustrated via the simple exam-
ple of the two-sender multiple access channel. While individually
deficient, the optimal combination of shaping via nested coset
codes of the same generator matrix (which we refer to as homol-
ogous codes) and channel transformation is shown to achieve the
same performance as traditional random codes for the general
two-sender multiple access channel. The achievability proof of the
capacity region is extended to multiple access channels with more
than two senders, and with one or more receivers. A quantization
argument adapted to the proposed combination of two techniques
is presented to establish the achievability proof for their Gaussian
counterparts. It is illustrated by an example that combining
shaping and channel transformation is useful even when the goal
of transmission for a subset of the receivers is to recover a linear
combination of messages. These results open up new possibilities
of utilizing homologous codes for a broader class of applications.

Index Terms— Multiple access channels (MACs), nested coset
codes, algebraic network information theory, linear codes, com-
munication and computation with linear codes.

I. INTRODUCTION

RANDOM independently and identically distributed
(i.i.d.) code ensembles play a fundamental role in net-

work information theory, with most existing coding schemes
built on them; see, for example, [1]–[3]. As shown by the
classical example by Körner and Marton [4], however, using
the same code at multiple users can achieve strictly bet-
ter performance for some communication problems. Recent
studies illustrate the benefit of such structured coding for
computing linear combinations [5]–[10], for the interference
channels [11]–[13], and for multiple access channels (MACs)
with state information [14]. Consequently, there has been a
flurry of research activities on structured coding in network
information theory, facilitated in part by several standalone
workshops and tutorials at major conferences by leading
researchers.
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Most of the existing results are based on lattice codes or
linear codes on finite alphabets. Recently, Padakandla and
Pradhan [14] brought a new dimension to the arsenal of
structured coding by developing nested coset codes as a
method to shape the input distribution of the channel; see
also Miyake [15] for nested coset codes for point-to-point
communication. In these nested coset coding schemes, a coset
code of a rate higher than the target is first generated randomly.
A codeword of a desired property (such as type or joint
type) is then selected from a subset (a coset of a subcode).
This construction is reminiscent of the multicoding scheme in
Gelfand–Pinsker coding for channels with state and Marton
coding for broadcast channels. But in a sense, nested coset
coding is more fundamental in that the scheme at its core
is relevant even for single-user point-to-point communication.
By a careful combination of individual and common parts of
coset codes, the coding scheme proposed by Padakandla and
Pradhan [14] achieves the rates for multiple access channels
with state beyond what can be achieved by existing random
or structured coding schemes. The analysis of the scheme is
performed by packing and covering lemmas for nested coset
codes that parallel such lemmas for random i.i.d. coding [1].

Recently, structured coding based on random nested coset
codes was further streamlined by Lim et al. [8]. With the
primary motivation of communicating linear combinations of
codewords over a multiple access channel (as in the celebrated
compute–forward scheme [6], [16]), they augmented the origi-
nal nested coset coding schemes in [14], [15] with the channel
transformation technique by Gallager [17, Sec. 6.2] and devel-
oped new analysis tools when multiple senders use nested
coset codes with a common generator matrix. The resulting
achievable rate region, when adapted to the Gaussian case,
improves upon the previous result for compute–forward [6].

In both [14] and [8], however, structured coding of nested
coset codes is reserved for rather niche communication sce-
narios of adapting multiple codewords to a common channel
state or computing sums of codewords, and even in these
limited cases, as a complement to random i.i.d. coding. The
coding scheme in [14] uses superposition of codewords with
individual and common generator matrices. A similar coding
scheme in [13] for three-user interference channels again uses
a combination of random i.i.d. coding (for message decoding)
and structured coding (for function decoding) of nested coset
codes, this time with a more explicit superposition coding
architecture. There is also some indication that the benefit of
computation can be realized to the full extent only in special
cases for which desired linear combinations and channel
structures are matched [18]. In the same vein, for a given code
distribution, the aforementioned rate region for computation
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in [8] turns out to be strictly smaller than the polymatroidal
region that is achievable by random i.i.d. coding (refer to (1)
for the formal description) when computation is specialized
to communication (i.e., the identity function computation).
In this regard, Lim et al. [8] have recently improved their
analysis to establish a larger achievable rate region for message
communication [19], which is still strictly smaller than the
targeted polymatroidal region. It should be noted that the
corner points of the polymatroidal region are included in
this achievable rate region, and hence that structured coding
followed by time sharing achieves the same rate region as ran-
dom i.i.d. coding and thus achieves the entire capacity region.
This time sharing idea, however, is not sufficient to achieve
optimal rates for more complicated network models, such as
multiple-receiver MACs [20] or interference channels [12]
since each receiver requires different time allocation among
the senders. Apparently, structured coding, even based on the
promising new technique of nested coset codes, can only play
a complementary role to random i.i.d. coding.

This paper aims to illustrate that at least for simple com-
munication networks, the opposite is true, and that structured
coding can completely subsume random i.i.d. coding. In
particular, we show that a random ensemble of nested coset
codes of the same generator matrix (which we referred to
as homologous codes [21]), which was thought to be good
only for recovering linear combinations, can achieve the same
rates as independently generated linear or nonlinear random
codes for the task of communicating individual codewords
over MACs.

For the simplicity of the exposition, we start our discussion
with two-sender MACs and show that the pentagonal region
achievable by random i.i.d. codes is achievable without time
sharing by a careful construction of random homologous
codes. Our finding relies on the identification of shaping and
channel transformation techniques—both of which are used to
improve upon conventional coset codes by allowing nonuni-
form codewords—as key components to supplant random i.i.d.
coding by structured coding. We first evaluate achievable rates
of individual techniques, which fall short of the target. We then
combine these two techniques to obtain the achievability of the
pentagonal region.

Of the key components, shaping via homologous codes was
analyzed in [19]. We provide a different analysis to obtain an
achievable rate region that is smaller but easier to compute
than [19]. The idea of channel transformation, the other key
component, is commonly used in network information theory
literature for converting the channel input alphabet into a
desired one, such as a finite field as in [19]. Gallager [17, Sec.
6.2], on the other hand, makes use of channel transformation
for another purpose—to modify the distribution of a random
linear code ensemble by converting the channel input alphabet
to a large enough extension of the desired finite field. The
perspective of allowing extension fields for the channel
transformation does not appear in the multiple-user structured
coding literature. Following a similar idea to Gallager [17, Sec.
6.2] for MACs, we first present a structured coding scheme
that utilizes channel transformation applied on coset codes and

we provide an achievable rate region for this scheme. We then
incorporate channel transformation into homologous codes
instead of coset codes to bring extra freedom by shaping.
This combination helps us create asymmetry between senders
to remedy the effect of aligning their codebooks into the
same span, which leads to the achievability of the pentagonal
region. It is illustrated by an example that the flexibility
of adjusting the amount of asymmetry is useful even when
there are multiple receivers one of which wants to compute
a linear combination of messages whereas others want to
recover the messages themselves. Even in this case, careful
combination of shaping and channel transformation using
extension fields strictly outperforms random i.i.d. codes
as well as homologous codes constructed in the desired
finite field.

These results are extended to MACs with more than two
senders and with one or more receivers, and it is shown that
combination of the shaping and the channel transformation
can achieve the capacity region in general. On the contrary,
it is illustrated by an example of two-receiver MAC that
the shaping even with convexification via time-sharing (that
corresponds to [19]) achieves a strictly smaller rate region
than the capacity. Finally, the achievability of the capacity
region for the Gaussian counterparts is shown via a different
quantization argument that is based on partitioning the sample
space into equiprobable quantiles and is more convenient for
our construction of homologous codes than the conventional
uniform quantization.

The rest of the paper is organized as follows. Section II
formulates the problem and defines nested coset codes and
homologous codes. Section III discusses the running examples
of binary adder and binary erasure multiple access channels.
The main results for the two-sender MAC are presented
in Section IV, and are extended to more than two senders
in Section V and one or more receivers in Section VI.
Section VII presents the achievability of the capacity region
for the Gaussian MAC. The problem of simultaneous commu-
nication and computation via homologous codes is discussed
in Section VIII. Section IX concludes the paper.

We adapt the notation in [1], [2]. The set of integers
{1, 2, . . . , n} is denoted by [n]. For a length-n sequence
(vector) xn = (x1, x2, . . . , xn) ∈ X n , we define its type as
π(x |xn) = |{i : xi = x}|/n for x ∈ X . Upper case letters
X, Y, . . . denote random variables. For ε ∈ (0, 1), we define
the ε-typical set of length-n sequences (or the typical set in
short) as T (n)

ε (X) = {xn : |p(x) − π(x |xn)| ≤ εp(x), x ∈ X }.
A tuple of k random variables (X1, X2, . . . , Xk) is denoted by
Xk , and for J ⊆ [k], the subtuple of random variables with
indices from J is denoted by X (J ) = (Xi : i ∈ J ). The
indicator function �S : X → {0, 1} for S ⊆ X is defined as
�S (x) = 1 if x ∈ S and 0 otherwise. A length-n vector of
all zeros (ones) is denoted by 0n (1n), where the subscript is
omitted when it is clear in the context. An m ×n matrix of all
zeros is denoted by Om×n . The n×n identity matrix is denoted
by In . For α ∈ (0, 1), H (α) := −α log2(α)−(1−α) log2(1−α)
denotes the binary entropy function. Fq denotes a finite field
of order q .
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II. PROBLEM FORMULATION

Consider the k-sender discrete memoryless (DM) multiple
access channel (MAC)

(X1 × X2 × . . . × Xk, p(y|x1, x2, . . . , xk),Y),

which consists of k sender alphabets X j , j ∈ [k], a receiver
alphabet Y , and a collection of conditional probability distri-
butions pY |Xk (y|x1, x2, . . . , xk).

An (n, n R1, n R2, . . . , n Rk) code for the multiple access
channel consists of k message sets, F

nR j
q , j ∈ [k], k encoders

where encoder j ∈ [k] assigns a codeword xn
j (m j ) ∈ X n

j to

each message m j ∈ F
nR j
q , and a decoder that assigns an esti-

mate (m̂1, . . . , m̂k) to each received sequence yn . The random
message tuple (M1, . . . , Mk) is assumed to be independent and
uniformly distributed. The probability of error is defined as

P(n)
e = P((M̂1, . . . , M̂k ) �= (M1, . . . , Mk )).

A rate tuple (R1, R2, . . . , Rk) is said to be achievable if there
exists a sequence of (n, n R1, n R2, . . . , n Rk) codes such that
limn→∞ P(n)

e = 0. The capacity region is defined as the
closure of the set of achievable rate tuples. Single letter char-
acterization of this capacity region was derived in [22], [23]
using random i.i.d. coding arguments. For a given probability
mass function (pmf) p(xk), define RMAC(Xk) as the set of
rate tuples (R1, R2, . . . , Rk) such that∑

i∈J
Ri < I (X (J ); Y |X (J c)), ∀J ⊆ [k]. (1)

In (1), by the q-ary code construction, the information rates are
in terms of q-ary symbols and the information measures are in
log base q . One can divide both sides of the inequalities in (1)
by log2 q to obtain a set of rate constraints in terms of bits.
Henceforth, we present all the achievability results in terms
of bits by assuming this q-ary to bit conversion is performed.
The capacity region is then defined as the convex closure of⋃

p(xk) RMAC(Xk).
In this work, we are particularly interested in the perfor-

mance of homologous codes that preserve a common structure
among different senders. For the ease of exposition, we start
with a discrete memoryless channel, i.e., k = 1. For the
discrete memoryless channel p(y|x), shaping of the channel
input distributions via nested coset codes was first proposed
in [15] and later appeared in [8], [14]. Following a similar
notation to these studies, the nested coset codes can be defined
as follows.

Definition 1 (Nested coset codes): An (n, n R, n R̂, Fq)
nested coset code consists of a message set F

nR
q , a generator

matrix G ∈ F
n(R+R̂)×n
q , a coset sequence dn , a shaping

function s : F
nR
q → F

nR̂
q , an encoder that assigns a codeword

to each message according to the steps below, and a decoder
that assigns an estimate to each received sequence yn .

1) For each m ∈ F
nR
q and l ∈ F

nR̂
q , compute

xn(m, l) = [m l] G ⊕ dn . (2)

2) For each message m ∈ F
nR
q , choose xn(m, s(m)) as the

assigned codeword, where s(m) is the specified shaping
function.

Remark 1: An (n, n R, Fq ) coset code is a special case of an
(n, n R, n R̂, Fq) nested coset code with R̂ = 0 (no shaping).
Specializing further, we can view an (n, n R, Fq ) linear code
as an (n, n R, Fq ) coset code with dn = 0.

The encoding steps of nested coset codes can be interpreted
as follows. In Step 1), an (n, n(R + R̂), Fq) coset code, C1, of
rate R+ R̂ that is larger than the target rate R is created using a
generator matrix G, which includes an (n, n R, Fq ) coset code,
C2, generated by the first n R rows of G, as a subcode. Thus,
these two coset codes are nested, i.e., C2 ⊆ C1. The intentional
redundancy in the size of the code C1 then allows selecting
a subset with the desired properties induced by the shaping
function in step 2). By the nested construction of C2 ⊆ C1,
any selected codeword in C1 will be in a coset of C2.

We now continue with a formal description of a random
ensemble of nested coset codes that are constructed via a
random generator matrix G and a random coset sequence Dn

to emulate the behavior of a random (nonlinear) code ensemble
drawn from a specified pmf p(x) on Fq [14].

Definition 2 (Random nested coset codes): Given a pmf
p(x) on Fq and ε > 0, an (n, n R, n R̂, Fq; p(x), ε) random
nested coset code ensemble consists of a message set F

nR
q ,

a random generator matrix G ∈ F
(nR+nR̂)×n
q and a random

coset sequence Dn with entries i.i.d. Unif(Fq), an encoder
that assigns a codeword to each message m ∈ F

nR
q according

to the steps below, and a decoder that assigns an estimate to
each received sequence yn .

1) Given the realizations of G and Dn , compute xn(m, l)
for each m ∈ F

nR
q and l ∈ F

nR̂
q by (2).

2) For each message m ∈ F
nR
q , choose an l ∈ F

nR̂
q such that

xn(m, l) ∈ T (n)
ε (X). If there are more than one such l,

choose one of them at random; if there is none, choose
one in F

nR̂
q .1

Similar to the deterministic setting, we can also consider
random coset codes and random linear codes.

Remark 2: An (n, n R, Fq ) random coset code ensemble is
a special case of an (n, n R, n R̂, Fq ; p(x), ε) random nested
coset code ensemble with R̂ = 0, p(x) = Unif(Fq) and ε = 0.
Specializing further, we can view an (n, n R, Fq ) random
linear code ensemble as an (n, n R, Fq ) random coset code
ensemble with Dn = 0.

As shown in [8], [14], random nested coset code ensembles
can achieve the capacity of a discrete memoryless channel
p(y|x). When the input alphabet X is not isomorphic to a
finite field, the channel can be transformed into a virtual chan-
nel p(y|u) with equal capacity via an appropriately chosen
auxiliary input U and symbol-by-symbol mapping X = ϕ(U).
This result can be extended to the Gaussian channel [8] (via
a quantization argument) and to MACs [14].

We now consider nested coset codes with structural
similarity.

Definition 3 (Homologous codes): An (n, ((n R j , n R̂ j ) :
j ∈ [k]), Fq) homologous code is a collection of

1This specific shaping function is referred to as the joint typicality encoding
in [14]; see [24] for a similar technique in the context of lattice-based source
coding.
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(n, n R j , n R̂ j , Fq) nested coset codes, j ∈ [k], and consists of

k message sets F
nR j
q , a common generator matrix G ∈ F

κ×n
q

with κ = max j (n R j + n R̂ j ), k coset sequences dn
j , k shaping

functions s j : F
nR j
q → F

nR̂ j
q , k encoders, where encoder

j ∈ [k] assigns a codeword to each message according to the
steps below, and a decoder that assigns an estimate to each
received sequence yn .

1) For each m j ∈ F
nR j
q and l j ∈ F

nR̂ j
q , compute2

xn
j (m j , l j ) = [m j l j 0κ−n(R j +R̂ j )

]G ⊕ dn
j . (3)

2) For each message m j ∈ F
nR j
q , choose xn

j (m j , s(m j )) as
the assigned codeword, where s j (m j ) is the specified
shaping function.

The term “homologous” was first proposed by the well-
known biologist Owen [25] and later adopted by Darwin [26]
to characterize the structures that have evolved from the same
ancestor but differ in detail. In biological analogy, even though
homologous codes are constructed from the same generator
matrix, the actual “shape” of the codes can be quite different
due to individual shaping functions.

We are particularly interested in the performance of a
randomly generated homologous code ensemble, which is
defined as follows.

Definition 4 (Random homologous codes): Given a pmf
p = ∏k

j=1 p(x j ) over Fq and ε > 0, an (n, ((n R j , n R̂ j ) :
j ∈ [k]), Fq; p, ε) random homologous code ensemble is a
collection of (n, n R j , n R̂ j , Fq; p(x j ), ε) random nested coset
code ensembles, j ∈ [k], and consists of k message sets
F

nR j
q , a common random generator matrix G ∈ F

κ×n
q with

κ = max j (n R j + n R̂ j ) and k random coset sequences Dn
j

with entries i.i.d. Unif(Fq), k encoders, where encoder j ∈ [k]
assigns a codeword to each message according to the steps
below, and a decoder that assigns an estimate to each received
sequence yn .

1) Given the realizations of G and Dn
j , compute xn

j (m j , l j )

for each m j ∈ F
nR j
q and l j ∈ F

nR̂ j
q by (3).

2) For each message m j ∈ F
nR j
q , choose an l j ∈ F

nR̂ j
q such

that xn
j (m j , l j ) ∈ T (n)

ε (X j ). If there are more than one
such l j , choose one of them at random; if there is none,

choose one in F
nR̂ j
q .

A rate tuple (R1, R2, . . . , Rk) is said to be achiev-
able by random homologous codes in Fq for the multiple
access channel p(y|x1, . . . , xk) if there exists a sequence of
(n, ((n R j , n R̂ j ) : j ∈ [k]), Fq; p, ε) random homologous
code ensemble such that limn→∞ E[P(n)

e ] = 0 for some pmf
p(xk) and for some ε > 0, where the expectation is taken with
respect to the randomness in the common generator matrix and
individual coset sequences.

Note that for the k-sender DM-MAC p(y|x1, x2, . . . , xk)
and the input pmfs p(x1), p(x2), . . . , p(xk), each sender can
use a random nested coset code ensemble (with individual
generator matrices G1, G2, . . . , Gk) to achieve the region

2Zero padding in (3) is because nR j + nR̂ j may differ for different j .

RMAC(Xk) characterized in (1). Thus, the corresponding het-
erologous nested coset codes can emulate the performance of
typically nonlinear random code ensembles for MACs.3 On
the other hand, due to the use of a common generator matrix,
homologous codes can achieve high rates when the goal of
communication is to recover a linear combination of code-
words. For a 2-sender DM-MAC, an achievable rate region
is characterized in [8] for recovering linear combinations of
codewords from random homologous code ensembles. When
recovering both messages, however, this achievable rate region
computed for a given input pmf is in general smaller than
the region in (1). Even a tighter probability of error analysis
discussed in [19] does not guarantee the achievability of the
region in (1). This raises the question of whether random
homologous codes are useful only for communicating the sum
of the codewords (or equivalently, the sum of the messages)
and fundamentally deficient compared to heterologous ones in
communicating the messages themselves.

III. MOTIVATING EXAMPLES

We present two toy examples that illustrate the perfor-
mance of homologous codes and motivate our main result in
Section IV.

Example 1 (Binary adder MAC): Let Y = X1 ⊕ X2, where
X1 = X2 = Y = {0, 1} and the addition operation ⊕ is
over F2. The capacity region of this channel is achieved by
random coding with i.i.d. Bern(1/2) inputs X1 and X2, and
is depicted in Fig. 1a. No binary linear or coset codes of the
same generator matrix, however, can achieve this region. As
a matter of fact, binary linear or coset codes of the same
generator matrix can only achieve the rate region depicted
in Fig. 1b. The achievability of (R1, R2) = (1, 0) follows
by using a pair of (n, n, F2) and (n, 0, F2) coset (or linear)
codes with the generator matrix G = I , arbitrarily chosen
coset sequences dn

1 and dn
2 , and the decoder that estimates

m̂1 = yn
dn
1 . Exchanging the roles of encoder 1 and 2 implies

the achievability of (R1, R2) = (0, 1). For the converse,
suppose without loss of generality that R1 ≥ R2 > 0. Any
message pair (m1, m2) ∈ F

nR1
2 × F

nR2
2 results in the same

output as the message pair (m1 ⊕ [m 0], m2 ⊕ m) for some
m �= 0 ∈ F

nR2
2 , which implies the converse.

By using homologous codes, however, the capacity region
can be achieved. Suppose without loss of generality that
R1 ≥ R2 where R1 + R2 ≤ 1. Consider the (n, n R1, 0, n R2,
n(1 − R2), F2) homologous code constructed using the gener-
ator matrix G = I and the coset sequences dn

1 = dn
2 = 0,

where the shaping function for encoder 2 is specified as
s2 : F

nR2
2 → F

n(1−R2)
2 , s2(m2) = [0 m2]. It follows that the

codeword pair assigned to (m1, m2) ∈ F
nR1×nR2
2 is

xn
1 (m1) = [m1 0],

xn
2 (m2, s2(m2)) = [m2 s2(m2)] = [m2 0 m2].

3Indeed, for k = 2, by controlling the structure of G1 and G2 more
carefully, larger rates than random codes can be achieved for channels with
state [14].
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Fig. 1. The binary adder MAC in Example 1.

Fig. 2. The binary erasure MAC in Example 2.

Given the channel output yn , the decoding rule that declares
the estimates m̂1 and m̂2 according to

m̂2 = yn
n−nR2+1 and m̂1 = ynR1

1 
 [m̂2 0]
can recover the messages m1 and m2 without any errors.

In Example 1, homologous codes benefit from the algebraic
structure of the channel and emulate time division via the con-
catenation of two codes. The next example has an underlying
channel structure that is not fully compatible with the algebraic
structure of codes.

Example 2 (Binary erasure MAC): Let Y = X1 + X2,
where X1 = X2 = {0, 1}, Y = {0, 1, 2}, and the addition
operation + is over R. The capacity region of the channel is
achieved by random coding with i.i.d. Bern(1/2) inputs X1
and X2, and is depicted in Fig. 2a. In contrast, no pair of
binary coset codes with the same generator matrix can achieve
the rate pair (1/2 + ε, 1/2 + ε) for ε > 0. The proof of this
proposition is given in Appendix A.

This limitation of coset codes can be once again overcome
by using homologous codes. We first present the achievability
of the rate pair (R, 1) for R < 1/2 with linear codes. Let
AnR×n be a full-rank binary generator matrix of a linear
code that can reliably communicate R < 1/2 bits over
the point-to-point DM binary erasure channel of erasure
probability 1/2.4 Let

B =
[

A
A⊥

]
,

4The existence of such a linear code follows from [1, Section 3.1.3].

where A⊥ is an (n−n R)×n matrix whose rows are orthogonal
to the rows of A. Consider now a pair of (n, n R, F2) and
(n, n, F2) linear codes with generator matrices A and B
respectively. Each message pair (m1, m2) ∈ F

nR×n
2 is assigned

codewords xn
1 (m1) = [m1 0n(1−R)] B and xn

2 (m2) = m2 B ,
respectively. Notice that since messages M1 and M2 are chosen
independently, the codeword xn

1 (M1) is independent from the
codeword xn

2 (M2). Moreover, since B is a full-rank square
matrix and M2 is chosen uniformly at random among F

n
2,

entries of xn
2 (M2) are i.i.d. Bern(1/2). Therefore, the channel

from the perspective of sender 1, p(yn|xn
1 (M1)), is equivalent

to the point-to-point DM binary erasure channel with erasure
probability 1/2, which is illustrated in Fig. 2b. Upon receiving
yn , the decoder first declares the maximum likelihood estimate
m̂1 by treating xn

2 as noise and then declares the estimate
m̂2 by successive cancellation xn

2 (m̂2) = yn − xn
1 (m̂1).

The reliable communication of M1 and M2 depends on the
probability of error of the first decoding step, which vanishes
asymptotically as n → ∞ under the described matrix A.

We now construct homologous (2n, n + n R, 0, F2) and
(2n, n + n R, n − n R, F2) codes with the generator matrix

G =
⎡
⎣ B On×n

OnR×n

A⊥ B

⎤
⎦ ,

and shaping function s2 : F
n+nR
2 → F

n−nR
2 such that

s2(m2) = (m2,i )
n
i=nR+1 for m2 ∈ F

n+nR
2 . If each

message m1 ∈ F
n+nR
2 is divided into two sub-vectors
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Fig. 3. Block diagram for shaping.

as m1 = [m11 | m12], where m11 ∈ F
n
2 and m12 ∈ F

nR
2 , and

similarly each message m2 ∈ F
n+nR
2 is divided into three sub-

vectors as m2 = [m21 | m22 | m23], where m21, m23 ∈ F
nR
2 and

m22 ∈ F
n−nR
2 , then the assigned codewords can be written as

x2n
1 (m1) = [

m11 B
∣∣ m12 A

]
,

x2n
2 (m2, s2(m2)) = [

m21 A
∣∣ [m23 m22]B

]
.

Upon receiving the first half of the sequence y2n , the decoder
first declares the maximum likelihood estimate m̂21 by treating
the first half of x2n

1 as noise and then declares the estimate m̂11
by successive cancellation. Similarly after receiving the second
half of the sequence y2n , it declares the maximum likelihood
estimate m̂12 by treating the second half of x2n

2 as noise
and then declares the estimates m̂22 and m̂23 by successive
cancellation. By the construction of the matrix A, the first and
second halves of codewords are reliably communicated at rates
(1, R) and (R, 1), which, combined together, can be arbitrarily
close to (3/4, 3/4). The resulting transmission corresponds
to time sharing via the concatenation of two codes. A similar
argument can be extended to the entire capacity region.

The constructions of homologous codes for the binary adder
and erasure MACs respectively emulate time division and
time sharing in disguise via the concatenation of two codes.
Consequently, these codes do not scale to more complicated
problems (such as interference channels) in a satisfactory
manner. As we will illustrate shortly, however, most (random)
homologous codes are sufficient to achieve the capacity region,
provided that they are constructed according to appropriate
distributions.

IV. ACHIEVABLE RATE REGIONS OF RANDOM

HOMOLOGOUS CODES FOR TWO SENDERS

We now investigate the performance of random homologous
codes described in Definition 4 in Section II for the two
sender DM-MAC p(y|x1, x2). We take a gradual approach to
presenting the main result and first discuss the key technical
ingredients of the proof one by one.

A. Shaping

Symbols in an (n, n R, Fq ) random coset code ensemble are
uniformly distributed over Fq . By the shaping step inherent in
the nested coset codes, random homologous code ensembles
emulate the statistical behavior of a random (nonlinear) code

ensemble drawn from the desired distribution while maintain-
ing a common algebraic structure across users. To separate
the benefit from channel transformation, in this section, we
are particularly interested in the finite-field input DM-MAC
p(y|x1, x2), where X1 = X2 = Fq , and random homologous
codes designed over Fq for this channel. The block diagram
of this scheme is depicted in Fig. 3.

We describe the rate region achievable by random homolo-
gous codes. For given input pmfs p(x1) and p(x2), we refer
to the rate region in (1) as RMAC(X1, X2), i.e., the set of rate
pairs (R1, R2) such that

R1 < I (X1; Y |X2),

R2 < I (X2; Y |X1),

R1 + R2 < I (X1, X2; Y ),

and define RL(X1, X2) as the set of rate pairs (R1, R2) such
that

R1 < max{I (X1; Y ), H (X1) − H (X2) + I (X2; Y )}, (4)

or

R2 < max{I (X2; Y ), H (X2) − H (X1) + I (X1; Y )}. (5)

Proposition 1 (Shaping): A rate pair (R1, R2) is achievable
by random homologous codes in Fq for the finite-field input
DM-MAC p(y|x1, x2) if

(R1, R2) ∈ RMAC(X1, X2) ∩ RL(X1, X2)

for some input pmfs p(x1) and p(x2).
Proof: Our proof steps follow [8, Sec. VI] essen-

tially line by line, except the analysis of one error event.
Fix a pmf p = p(x1)p(x2). Let ε′ > 0. We use an
(n, n R1, n R̂1, n R2, n R̂2, Fq ; p, ε′) random homologous code
ensemble constructed in Definition 4. The decoder first fixes
a sufficiently large ε > ε′ and then searches a unique
pair of (m̂1, m̂2) such that (xn

1 (m̂1, l1), xn
2 (m̂2, l2), yn) ∈

T (n)
ε (X1, X2, Y ) for some (l1, l2). If the decoder finds the

unique pair, then it declares that (m̂1, m̂2) was transmitted.
Otherwise, it declares error. Assume that (M1, M2) is the
transmitted message pair and (L1, L2) is the auxiliary index
pair chosen by the shaping functions. We bound the probability
of error averaged over codebooks. As in [8], the decoder makes
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an error only if one or more of the following events occur:
E1 = {Xn

j (M j , l j ) /∈ T (n)
ε′ (X j ) for all l j , j = 1 or 2},

E2 = {(Xn
1 (M1, L1), Xn

2 (M2, L2), Y n)

/∈ T (n)
ε (X1, X2, Y )},

E3 = {(Xn
1 (M1, L1), Xn

2 (m2, l2), Y n) ∈ T (n)
ε (X1, X2, Y )

for some (m2, l2) �= (M2, L2)},
E4 = {(Xn

1(m1, l1), Xn
2 (M2, L2), Y n) ∈ T (n)

ε (X1, X2, Y )

for some (m1, l1) �= (M1, L1)},
E5 = {(Xn

1 (m1, l1), Xn
2 (m2, l2), Y n) ∈ T (n)

ε (X1, X2, Y )

for some (m1, l1) �= (M1, L1) and (m2, l2) �= (M2, L2)

such that [m1 l1 0] 
 [M1 L1 0] and

[m2 l2 0] 
 [M2 L2 0] are linearly independent},
E6 = {(Xn

1 (m1, l1), Xn
2 (m2, l2), Y n) ∈ T (n)

ε (X1, X2, Y )

for some (m1, l1) �= (M1, L1) and (m2, l2) �= (M2, L2)

such that [m1 l1 0] 
 [M1 L1 0] and

[m2 l2 0] 
 [M2 L2 0] are linearly dependent}.
Thus, by the union of events bound, E

P(n)
e

≤ P(E1) +∑
k �=1 P(Ek ∩ Ec

1). By [8], the first five terms tend to 0 as
n → ∞ if

R̂ j > DKL
j + δ(ε′), j = 1, 2

R1 + 2R̂1 + R̂2 < I (X1; Y |X2) + 2DKL
1 + DKL

2 − δ(ε),

R2 + R̂1 + 2R̂2 < I (X2; Y |X1) + DKL
1 + 2DKL

2 − δ(ε),

R1 + R2 + 2
2∑

i=1

R̂i < I (X1, X2; Y ) + 2
2∑

i=1

DKL
i − δ(ε),

where DKL
j := D(pX j ||Unif(Fq)) denotes the KL-divergence

between the input pmf p(x j ) and Unif(Fq) for j = 1, 2.
For the last term, one can use the analysis in [8] that is
originally conducted for decoding of two linearly independent
combinations of X1 and X2, namely, W1 = a1 X1 ⊕ a2 X2 and
W2 = b1 X1 ⊕ b2 X2. Even for fixed W1 and W2, however,
the resulting upper bound on R1 and R2 includes a max-min
optimization over all linear combinations of W1 and W2, which
is difficult to compute in general. Therefore, we present a new
upper bound resulting in an achievable rate region that is easier
to compute than the optimized rate region provided by [8].
Moreover, it can be shown that our achievable rate region is
larger than the one in [8] for some channels, such as the on–off
erasure MAC with p = 1/2 to be defined in Example 3.

Lemma 1: The probability P(E6 ∩ Ec
1) can be bounded by

two different expressions:
P(E6 ∩ Ec

1) ≤ (q − 1)qn(R̂1+R̂2+min{R1+R̂1,R2+R̂2})

· qn(H(X1)+H(X2)+H(X2|Y )−3+δ(ε)),

P(E6 ∩ Ec
1) ≤ (q − 1)qn(R̂1+R̂2+min{R1+R̂1,R2+R̂2})

qn(H(X1)+H(X2)+H(X1|Y )−3+δ(ε)).

Proof: Define the rate R = min{R1+ R̂1, R2+ R̂2}, and the
events M = {M1 = 0, M2 = 0} and L = {L1 = 0, L2 = 0}.

Define the set

D = {(m1, l1, m2, l2) ∈ F
nR1
q × F

nR̂1
q × F

nR2
q × F

nR̂2
q :

[m1 l1 0] �= 0, [m2 l2 0] �= 0 are linearly dependent}.
By the symmetry of code generation, P(E6 ∩ Ec

1 ) = P(E6 ∩
Ec

1 |M,L). To see this, note that

P(E6 ∩ Ec
1 )

=
∑
m1,l1
m2,l2

∑
G

∑
dn

1 ,dn
2

P

⎛
⎝ E6 ∩ Ec

1 , (M1, M2) = (m1, m2),
(L1, L2) = (l1, l2), G = G,

Dn
1 = dn

1 , Dn
2 = dn

2

⎞
⎠

(a)=
∑
m1,l1
m2,l2

∑
G

∑
dn

1 ,dn
2

P

⎛
⎜⎜⎝

E6 ∩ Ec
1 , (M1, M2) = (0, 0),

(L1, L2) = (0, 0), G = G,
Dn

1 = [m1 l1 0]G ⊕ dn
1 ,

Dn
2 = [m2 l2 0]G ⊕ dn

2

⎞
⎟⎟⎠

=
∑
m1,l1
m2,l2

P(E6 ∩ Ec
1 , (M1, L1, M2, L2) = (0, 0, 0, 0))

(b)= P(E6 ∩ Ec
1 |(M1, L1, M2, L2) = (0, 0, 0, 0)),

where (a) follows since (G, [m1 l1 0]G ⊕ Dn
1 , [m2 l2 0]G ⊕

Dn
2 )

d= (G, Dn
1 , Dn

2 ) results in a permuted codebook and
(b) follows by the fact proved in [8, Lemma 11] that
(M1, L1, M2, L2) is uniformly distributed over its support.

By this observation, it suffices to bound the conditional
probability as follows.

P(E6 ∩ Ec
1 |M,L)

= P
(
(Xn

1 (m1, l1), Xn
2 (m2, l2), Y n) ∈ T (n)

ε (X1, X2, Y )

for some (m1, l1, m2, l2) ∈ D,

Xn
j (0, 0) ∈ T (n)

ε′ (X j ) j = 1, 2|M,L
)

(a)≤
∑

(m1,l1 ,
m2 ,l2)∈D

P

⎛
⎜⎝

(Xn
1 (m1, l1), Xn

2 (m2, l2), Y n)

∈ T (n)
ε (X1, X2, Y ),

Xn
j (0, 0) ∈ T (n)

ε′ (X j ) j = 1, 2

∣∣∣∣ M,
L

⎞
⎟⎠

≤
∑

(m1,l1 ,
m2,l2)∈D

P

⎛
⎜⎝

Xn
2 (m2, l2), Y n)

∈ T (n)
ε (X2, Y ),

Xn
j (0, 0) ∈ T (n)

ε′ (X j ) j = 1, 2

∣∣∣∣∣∣∣
M,L

⎞
⎟⎠

(b)≤
∑

(m1,l1 ,
m2,l2 )∈D

P

⎛
⎜⎝

Xn
2 (m2, l2), Y n)

∈ T (n)
ε (X2, Y ),

Xn
j (0, 0) ∈ T (n)

ε (X j ) j = 1, 2

∣∣∣∣∣∣∣
M,L

⎞
⎟⎠

=
∑

(m1,l1,m2,l2)∈D

∑
xn
1 ∈T (n)

ε (X1),

xn
2 ∈T (n)

ε (X2)

∑
(x̃n

2 ,yn )∈
T (n)

ε (X2,Y )

P

⎛
⎝ [m2 l2 0]G ⊕ Dn

2 = x̃ n
2 ,

Dn
1 = xn

1 , Dn
2 = xn

2 ,
Y n = yn

∣∣∣∣∣∣M,L

⎞
⎠

(c)=
∑

(m1,l1,m2,l2)∈D

∑
xn
1 ∈T (n)

ε (X1),

xn
2 ∈T (n)

ε (X2)

∑
(x̃n

2 ,yn )∈
T (n)

ε (X2,Y )

P
( [m2 l2 0]G ⊕ Dn

2 = x̃ n
2 ,

Dn
1 = xn

1 , Dn
2 = xn

2

∣∣∣∣M,L
)

p(yn|xn
1 , xn

2 )
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(d)≤ qn(R̂1+R̂2)
∑

(m1,l1 ,m2 ,l2 )
∈D

∑
xn
1 ∈T (n)

ε (X1),

xn
2 ∈T (n)

ε (X2)

∑
yn∈

T (n)
ε (Y )

p(yn|xn
1 , xn

2 )

∑
x̃n
2 ∈

T (n)
ε (X2|yn )

P
( [m2 l2 0]G ⊕ Dn

2 = x̃ n
2 ,

Dn
1 = xn

1 , Dn
2 = xn

2

)

= qn(R̂1+R̂2)
∑

(m1,l1,m2,l2)∈D

∑
xn
1 ∈T (n)

ε (X1),

xn
2 ∈T (n)

ε (X2)∑
yn∈

T (n)
ε (Y )

p(yn|xn
1 , xn

2 )
∑
x̃n
2 ∈

T (n)
ε (X2|yn )

q−3n

≤ qn(R̂1+R̂2) |D| qn(H(X1)+H(X2)+H(X2|Y )+δ(ε))q−3n

≤ qn(R̂1+R̂2+R)(q − 1)qn(H(X1)+H(X2)+H(X2|Y )+δ(ε))q−3n,

where (a) follows by the union of events bound, (b) follows
since ε > ε′, (c) follows since, conditioned on (M,L), the
triple G → (Dn

1 , Dn
2 ) → Y n form a Markov chain, and (d)

follows by [8, Lemma 11]. By changing the order of Xn
1 and

Xn
2 , we obtain the second bound on P(E6 ∩ Ec

1 ).
By Lemma 1 and using the relation DKL

j = 1 − H (X j),
we have P(E6 ∩ Ec

1 ) → 0 as n → ∞ if min{R1 +
2R̂1 + R̂2, R2 + R̂1 + 2R̂2} < H (X1) + 2DKL

1 + DKL
2 −

min{H (X1|Y ), H (X2|Y )} − δ(ε). Choosing R̂1 = DKL
1 +

2δ(ε′), R̂2 = DKL
2 + 2δ(ε′) and letting ε → 0 yield that the

rate pairs (R1, R2) is achievable if

R1 < I (X1; Y |X2),

R2 < I (X2; Y |X1),

R1 + R2 < I (X1, X2; Y ),

min{R1 + H (X2), R2 + H (X1)}
< H (X1) + H (X2) − min{H (X1|Y ), H (X2|Y )}.

(6)

The rate region defined by (6) is equivalent to the region
RMAC(X1, X2) ∩ RL(X1, X2), as will be proved in Appen-
dix B. Taking the union over input pmfs p(x1) and p(x2)
completes the proof.

For the binary adder MAC, the achievable rate region in
Proposition 1 is indeed equivalent to the capacity region, which
is proved in Appendix C.

For the binary erasure MAC, however, the rate region
in Proposition 1 is strictly smaller than the capacity region,
as sketched in Fig. 4. In particular, the largest achievable
symmetric rate is 2/3 (see Appendix D).

We now introduce another simple example, which will be
used again in Section VI when we deal with multiple-receiver
MACs.

Example 3 (On–off erasure MAC): Let Y = (2X1 − 1) +
Z(2X2 − 1), where X1 = X2 = {0, 1}, Z = {0, 1}, and
Y = {0,±1,±2}, where the random variable Z ∼ Bern(p)
is independent from X1 and X2. If Z = 1, the channel is
equivalent to the binary erasure MAC. If Z = 0, the output Y
is only dependent on X1. That is why this channel is called
the on–off erasure MAC.

Fig. 4. The achievable rate region in Proposition 1 for the binary erasure
MAC in Example 2.

For any p ∈ (0, 1], the capacity region of the on–off erasure
MAC is achieved by random coding with i.i.d. Bern(1/2)
inputs X1 and X2, and is shown in Fig. 5a (in terms of p).
If p ≤ 2/3, the achievable rate region in Proposition 1 is
equivalent to the capacity region. If p > 2/3, however, it
reduces to the rate region depicted in Fig. 5b that is strictly
smaller than the capacity region (see Appendix E). Note that
for p = 1, the rate region in Fig. 5b is equivalent to the
achievable rate region for the binary erasure MAC sketched
in Fig. 4, since the on–off erasure MAC is equivalent to the
binary erasure MAC when p = 1.

Remark 3: As shown by [19], the achievable rate region
in Proposition 1 can be improved by stronger analysis tools,
which we will discuss later in Section V-A and Proposition 4.
For Examples 1–3, however, the achievable rate region in [19]
reduces to that of Proposition 1.

B. Channel Transformation

Instead of choosing an appropriate shaping function within
a nested coset code, there is a simpler way of achieving the
performance of nonuniformly distributed codes. Following the
basic idea in [17, Sec. 6.2], we can simply transform the chan-
nel p(y|x1, x2) into a virtual channel with finite-field inputs

p(y|u1, u2) = pY |X1,X2(y|ϕ1(u1), ϕ2(u2)) (7)

for some symbol-by-symbol mappings ϕ1 : Fq → X1
and ϕ2 : Fq → X2, as illustrated in Fig. 6. Note that this
transformation can be applied to any DM-MAC p(y|x1, x2) of
arbitrary (not necessarily the same finite-field) input alphabets.

We now consider a pair of (n, n R1, Fq) and (n, n R2, Fq)
random coset code ensembles with the same generator matrix
for the virtual channel, which is equivalent to random homol-
ogous codes with R̂1 = R̂2 = 0. The block diagram of this
scheme is depicted in Fig. 7. For a given pair of symbol-by-
symbol mappings ϕ1 and ϕ2, we can establish the following
whose proof is deferred to Appendix F.

Proposition 2: A rate pair (R1, R2) is achievable by ran-
dom coset codes in Fq with the same generator matrix for the
DM-MAC p(y|x1, x2), if

(R1, R2) ∈ RMAC(U1, U2) ∩ RL(U1, U2),

where RMAC(U1, U2) is defined as in (1) for the virtual
channel p(y|u1, u2) in (7) and for the inputs U1 and U2 drawn
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Fig. 5. The on–off erasure MAC in Example 3.

Fig. 6. The virtual DM-MAC p(y|u1, u2) with virtual inputs U1 and U2.

independently according to Unif(Fq), and RL(U1, U2) is the
set of (R1, R2) such that

min(R1, R2) < max{I (U1; Y ), I (U2; Y )}. (8)

Note that (8) is equivalent to (4) and (5) with (U1, U2) in
place of (X1, X2) since U1 and U2 are uniform on Fq .

Proposition 2 was stated for a fixed channel transformation
specified by a given pair of symbol-by-symbol mappings
ϕ1(u1) and ϕ2(u2) on a finite field Fq . We now consider
all such channel transformations, which results in a simpler
achievable rate region.

Corollary 1 (Channel transformation): A rate pair (R1, R2)
is achievable by random coset codes generated in some
finite field with the same generator matrix for the DM-MAC
p(y|x1, x2), if

(R1, R2) ∈ RMAC(X1, X2) ∩ R ′
L(X1, X2)

for some input pmfs p(x1) and p(x2), where R ′
L(X1, X2) is

the set of (R1, R2) such that

min(R1, R2) < max{I (X1; Y ), I (X2; Y )}.
Proof: First suppose that p(x1) and p(x2) are of the form

i

ρm
(9)

for some prime ρ and i, m ∈ Z
+ for all x1 and x2.

Then there exist ϕ1(u1) and ϕ2(u2) on Fq such that X j
d=

ϕ j (U j ) with U j ∼ Unif(Fq), where q = ρm . Hence, we
can transform the channel p(y|x1, x2) into a virtual channel
p(y|u1, u2) and achieve the rate region in Proposition 2.
Now, since (U1, U2) → (X1, X2) → Y form a Markov
chain and (U1, X1) and (U2, X2) are independent, the rate
region RMAC(U1, U2) ∩ RL(U1, U2) in Proposition 2 can be

simplified as RMAC(X1, X2)∩R ′
L(X1, X2). Finally, the earlier

restrictions on the input pmfs can be removed since the set of
pmfs of the form (9) is dense. This completes the proof.

We now revisit the previous examples to evaluate the
achievable rate region in Corollary 1.

• Binary adder MAC: The achievable rate region
in Corollary 1 is equivalent to the capacity region.
To see this, note that for the binary adder MAC,
RL(X1, X2) ⊆ R ′

L(X1, X2) for any p(x1) and p(x2),
and the former region achieved by the shaping (with
the intersection with RMAC(X1, X2)) reduces to the
capacity region as proved in Appendix C. Therefore, the
capacity region of the binary adder MAC is achievable
by using coset codes over the virtual channel. This
does not contradict the fact that no coset code on the
binary field can achieve a positive symmetric rate pair,
since channel transformation allows the use of linear
(or coset) codes over larger finite fields.

• Binary erasure MAC: The achievable rate region in
Corollary 1 reduces to the one in Proposition 1 sketched
in Fig. 4, although R ′

L(X1, X2) is in general different
than RL(X1, X2) for fixed pmfs p(x1) and p(x2). The
proof is given in Appendix D.

• On–off erasure MAC: If p ≤ 2/3, the achievable rate
region in Corollary 1 reduces to the capacity region
sketched in Fig. 5a. If p > 2/3, however, it reduces to
the rate region sketched in Fig. 8. While larger than what
is achieved by the shaping (cf. Fig. 5b), the achievable
rate region by channel transformation in Corollary 1 is
still strictly smaller than the capacity region. The details
are given in Appendix E.

Remark 4: The achievable rate region for the channel trans-
formation technique in Corollary 1 can be easily evaluated
for fixed input pmfs p(x1) and p(x2). Using the analysis
tools developed in [19], Proposition 2 and Corollary 1 can be
potentially strengthened. Given a virtual channel p(y|u1, u2)
with input pmfs p(u1) and p(u2) on some Fq , the result-
ing achievable rate region would depend on the distribution
of (a1U1 ⊕ a2U2, Y ) for every a1, a2 �= 0 ∈ Fq . The
union of these rate regions over all channel transformations,
however, is not computable. Therefore, it is unclear whether
the insufficiency of the channel transformation technique for
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Fig. 7. Block diagram for channel transformation.

Fig. 8. The achievable rate region in Corollary 1 for the on–off erasure MAC
in Example 3 when p > 2/3.

Examples 2–3 (binary erasure MAC and on–off erasure MAC)
is fundamental or due to the deficiency of our analysis tools.

C. Combination

As shown for the binary erasure MAC and on–off erasure
MAC examples, shaping (with homologous codes) and channel
transformation (with coset codes of the same generator matrix)
seemingly cannot achieve the capacity region. When combined
together, these techniques can achieve the pentagonal region
RMAC(X1, X2) for any p(x1) and p(x2) while maintaining the
algebraic structure of the code. Consider the virtual channel
in (7) and random homologous codes for this channel, a block
diagram for which is depicted in Fig. 9. Then, Proposition 1
implies the following.

Proposition 3: A rate pair (R1, R2) is achievable by ran-
dom homologous codes in Fq for the DM-MAC p(y|x1, x2), if

(R1, R2) ∈ RMAC(X1, X2) ∩ RL(U1, U2)

for some pmfs p(u1) and p(u2) on Fq , and some mappings
x1 = ϕ1(u1) and x2 = ϕ2(u2), where RL(U1, U2) is the set
of rate pairs (R1, R2) satisfying (4) or (5).

Proof: Given pmfs p(u1) and p(u2) on Fq , and
mappings x1 = ϕ1(u1) and x2 = ϕ2(u2), by Proposition 1,
the rate region RMAC(U1, U2) ∩ RL(U1, U2) is achievable
by random homologous codes in Fq for the virtual channel
p(y|u1, u2). Now, since (U1, U2) → (X1, X2) → Y form a
Markov chain and (U1, X1) and (U2, X2) are independent,
the rate region RMAC(U1, U2) ∩ RL(U1, U2) simplifies to
RMAC(X1, X2) ∩ RL(U1, U2). The proof follows by taking
the union over pmfs p(u1) and p(u2) on Fq , and mappings
x1 = ϕ1(u1) and x2 = ϕ2(u2).

We are now ready to state one of the main technical results
of this paper, which follows from Proposition 3 by optimizing
over all channel transformations.

Theorem 1 (Combination): A rate pair (R1, R2) is achiev-
able by random homologous codes in some finite field for the
DM-MAC p(y|x1, x2), if (R1, R2) ∈ RMAC(X1, X2) for some
p(x1) and p(x2).

Proof: Our argument is similar to the proof of Corollary 1,
except that the choice of channel transformation needs more
care. First suppose that p(x1) and p(x2) are of the form (9)
for some prime ρ. We will show that there exist a finite field
Fq , pmfs p(u1) and p(u2) on Fq , and mappings x1 = ϕ1(u1)
and x2 = ϕ2(u2) such that RMAC(X1, X2) ⊆ RL(U1, U2).
Consider random homologous codes over Fq with q = ρ2m .

Choose U1 and ϕ1 such that U1 and ϕ1(U1)
d= X1 are one-to-

one on the support of U1 (this is always possible since q ≥
ρm). Also choose U2 ∼ Unif(Fq) and ϕ2 such that ϕ2(U2)

d=
X2 (this is possible due to the form of p(x2)). Let (R1, R2) ∈
RMAC(X1, X2). Then, (R1, R2) satisfies

R2 < I (X2; Y |X1)

≤ H (X2)

≤ log ρm

≤ H (U2) − H (U1)

≤ H (U2) − H (U1) + I (U1; Y ),

which implies that (R1, R2) ∈ RL(U1, U2). Finally, the
restrictions on the input pmfs can be removed again by the
denseness argument.

Remark 5: Theorem 1 can be strengthened by putting a car-
dinality bound on the underlying finite field. We need a differ-
ent construction. By Bertrand’s postulate, there exists a prime
q such that |X1||X2| < q < 2|X1||X2|. For a given input pmf
p(x1) and p(x2), consider a random homologous code ensem-

ble over Fq . Choose U1 and ϕ1 such that U1 and ϕ1(U1)
d=

X1 are one-to-one on the support of U1, which is always
possible since q ≥ |X1|. Also choose U2 and ϕ2 such that
U2 and (X1, X2) are one-to-one on the support of U2 and that

ϕ2(U2)
d= X2, which is always possible since q ≥ |X1||X2|.

The claim is that RMAC(X1, X2) ⊆ RL(U1, U2). To see this,
let (R1, R2) ∈ RMAC(X1, X2). Then, (R1, R2) satisfies

R2 < I (X2; Y |X1)

≤ H (X2)

= H (X1, X2) − H (X1)

= H (U2) − H (U1)

≤ H (U2) − H (U1) + I (U1; Y ),

which implies that (R1, R2) ∈ RL(U1, U2). Therefore, for
any pmfs p(x1) and p(x2), the rate region RMAC(X1, X2) is
achievable by random homologous codes in some finite field
Fq such that q ≤ 2|X1||X2| for the DM-MAC p(y|x1, x2).
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Fig. 9. Block diagram for homologous codes over the virtual channel.

V. EXTENSION TO MORE THAN TWO SENDERS

The achievable rate region by random homologous codes
for the 2-sender DM-MAC can be extended to DM-MACs
with more senders. In this section, we present the performance
of random homologous code ensembles for the k-sender
DM-MAC p(y|x1, x2, . . . , xk). Similar to Section IV, we
first discuss the performance of random homologous codes
under the fixed channel alphabets, following the recent
work in [19]. We then generalize the result by incorporating
channel transformation.

A. Shaping

The achievable rate region for the finite-field input DM-
MAC p(y|x1, x2, . . . , xk), X1 = X2 = · · · = Xk = Fq , by
random homologous code ensembles was studied in [19]. For
the sake of completeness, we review the main result in [19]
on which we build the achievability of the capacity region for
the k-sender DM-MAC. Let A denote the set of rank deficient
k × k matrices over Fq . For a given matrix A ∈ A, we define
the collection

D(A) = {J ⊆ [k] : |J | = k− rank(A),

rank[AT e(J )T ]T = k},
where e(J ) ∈ F

|J |×k
q denotes the matrix whose rows are the

standard basis vectors e j for j ∈ J . For a given set J ∈ D(A)
and input pmfs p(x1), p(x2), . . . , p(xk), we define the rate
region R(A,J , Xk) as the set of rate tuples (R1, R2, . . . , Rk)
such that ∑

j∈J
R j < I (X (J ); Y, WA),

where

WA = A [X1 X2 . . . Xk]T .

We are now ready to state the main result of [19].
Proposition 4 ([19, Theorem 1]): A rate tuple

(R1, R2, . . . , Rk) is achievable by random homologous codes
in Fq for the finite-field input DM-MAC p(y|x1, x2, . . . , xk),
if

(R1, R2, . . . , Rk) ∈
⋂
A∈A

⋃
J ∈D(A)

R(A,J , Xk)

for some input pmfs p(x1), p(x2), . . . , p(xk).
Remark 6 (Revisit of the 2-sender DM-MAC): Consider

the 2-sender DM-MAC p(y|x1, x2) with given input pmfs

p(x1) and p(x2). To compute the achievable rate region in
Proposition 4, it suffices to consider the set of rank deficient
2 × 2 matrices with different spans. There are four types of
such matrices:

• A =
[

0 0
0 0

]
:

D(A) = {{1, 2}} and ∪J ∈D(A)R(A,J , X1, X2) reduces
to the set of rate pairs satisfying

R1 + R2 < I (X1, X2; Y ),

• A =
[

0 1
0 0

]
:

D(A) = {{1}} and ∪J ∈D(A)R(A,J , X1, X2) is the set
of rate pairs satisfying

R1 < I (X1; Y |X2),

• A =
[

1 0
0 0

]
:

D(A) = {{2}} and ∪J ∈D(A)R(A,J , X1, X2) is the set
of rate pairs satisfying

R2 < I (X2; Y |X1),

• A =
[

1 a
0 0

]
for some nonzero a ∈ Fq :

D(A) = {{1}, {2}} and ∪J ∈D(A)R(A,J , X1, X2) is the
set of rate pairs satisfying

R1 < I (X1; Y, Wa),

or

R2 < I (X2; Y, Wa),

where Wa = X1 ⊕ a X2.

The achievable rate region in Proposition 4 is then equivalent
to RMAC(X1, X2)∩R̃L(X1, X2) where R̃L(X1, X2) is the set
of rate pairs (R1, R2) such that for every nonzero a ∈ Fq

R1 < I (X1; Y, X1 ⊕ a X2) (10)

or

R2 < I (X2; Y, X1 ⊕ a X2). (11)

One may notice that for every nonzero a over Fq

H (X1|Y, X1 ⊕ a X2) = H (X2|Y, X1 ⊕ a X2)

≤ min{H (X1|Y ), H (X2|Y )},
which implies that R̃L(X1, X2) is in general larger than
RL(X1, X2) defined in Proposition 1 in Section IV-A. Indeed,
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the error analysis in the proof of Proposition 1 can be modified
to account for the larger R̃L(X1, X2) region.

Remark 7: The achievable rate region in Proposition 4 is
the largest region thus far established with homologous codes
in the literature. As a matter of fact, there is some indication
that this region is optimal in the sense that it cannot be
improved by using maximum likelihood decoding [9], [10].
Still, it is in general strictly smaller than the capacity region of
the k-sender DM-MAC. In particular, for the channels defined
in Examples 1–3, the achievable rate region in Propositon 4
reduces to the achievable rate region in Proposition 1 described
in Section IV-A. To see this, fix input pmfs p(x1) and p(x2).
The set of rate pairs satisfying (10) or (11) for a = 1 is
equivalent to the rate region RL(X1, X2).

As a corollary of Proposition 4, we can come up with a
smaller rate region achievable by random homologous codes
that is easier to compute. As we will discuss in the next
section, however, this smaller achievable rate region combined
with channel transformation gives rise to the achievability of
the capacity region. Let B denote the set of rank deficient
k × k matrices over Fq that is not row equivalent5 to a
diagonal matrix. Note that B ⊂ A. Given a matrix A ∈ B,
a set J ∈ D(A), and input pmfs p(x1), p(x2), . . . , p(xk), we
define the rate region R̃(A,J , Xk) as the set of rate tuples
(R1, R2, . . . , Rk) satisfying∑

j∈J
R j < H (X (J )) − min

S∈D(A)
H (X (S)|Y ).

Given input pmfs p(x1), p(x2), . . . , p(xk), we define the rate
region

RL(Xk) =
⋂
A∈B

⋃
J ∈D(A)

R̃(A,J , Xk). (12)

Corollary 2 (Extension of Proposition 1): A rate tuple
(R1, R2, . . . , Rk) is achievable by random homologous codes
in Fq for the finite-field input DM-MAC p(y|x1, x2, . . . , xk),
if

(R1, R2, . . . , Rk) ∈ RMAC(Xk) ∩ RL(Xk)

for some input pmfs p(x1), p(x2), . . . , p(xk).
We first revisit the 2-sender case with Corollary 2 and then
provide a proof for Corollary 2.

Remark 8 (Revisit of the 2-sender DM-MAC with Corol-
lary 2): For the case k = 2, the achievable rate region in
Corollary 2 reduces to the achievable rate region in Proposi-
tion 1. To see this, fix input pmfs p(x1) and p(x2). A rank-
deficient 2 × 2 matrix over Fq that is not row equivalent to a
diagonal matrix must be row equivalent to a matrix of the form[

a1 a2
0 0

]

for some nonzero a1 and a2 over Fq . Then, for every such
matrix A, D(A) = {{1}, {2}}. Therefore, the rate region
RL(X1, X2) defined in (12) is the set of rate pairs (R1, R2)
such that

R1 < H (X1) − min{H (X1|Y ), H (X2|Y )}
5Two matrices are row equivalent if one can be obtained from the other by

a sequence of elementary row operations.

or

R2 < H (X2) − min{H (X1|Y ), H (X2|Y )},
which is equivalent to the rate region RL(X1, X2) defined in
Section IV-A.

Proof of Corollary 2: We will show that given input pmfs
p(x1), p(x2), . . . , p(xk)

(RMAC(Xk) ∩ RL(Xk)) ⊆
⋂
A∈A

⋃
J ∈D(A)

R(A,J , Xk),

by first showing that

RMAC(Xk) =
⋂

A∈A\B

⋃
J ∈D(A)

R(A,J , Xk),

and then showing that

RL(Xk) ⊆
⋂
A∈B

⋃
J ∈D(A)

R(A,J , Xk).

To prove the first claim, let A be a rank-deficient k × k
matrix that is row equivalent to a diagonal matrix D (i.e.,
A ∈ A \ B), and let J be the set of indices such that
j ∈ J if D j j = 0. Then, by Lemma 3 in Appendix G,
D(A) = J and R(A,J , Xk) is reduced to the set of rate
tuples (R1, R2, . . . , Rk) satisfying∑

j∈J
R j < I (X (J ); Y, X (J c)).

Taking the intersection over all A ∈ A \ B proves the first
claim. For the second claim, it suffices to show that given a
matrix A ∈ B and a set J ∈ D(A)

R̃(A,J , Xk) ⊆ R(A,J , Xk).

Now, a rate tuple (R1, R2, . . . , Rk) ∈ R̃(A,J , Xk) satisfies∑
j∈J

R j < H (X (J )) − min
S∈D(A)

H (X (S)|Y )

≤ H (X (J )) − min
S∈D(A)

H (X (S)|Y, WA)

(a)= H (X (J )) − H (X (J )|Y, WA),

= I (X (J ); Y, WA),

where (a) follows since H (X (J )|Y, WA) = H (Xk|Y, WA)
is constant for every J ∈ D(A). Therefore, we have
(R1, R2, . . . , Rk) ∈ R(A,J , Xk), which completes the proof.

B. Combination

We incorporate channel transformation into random homol-
ogous codes to prove the achievability of the capacity region
of the k-sender DM-MAC. Similar to the idea discussed
in Section IV-B, we can simply transform the channel
p(y|x1, x2, . . . , xk) into a virtual channel with finite-field
inputs

p(y|u1, u2, . . . , uk)

= pY |X1,X2,...,Xk (y|ϕ1(u1), ϕ2(u2), . . . , ϕk(uk)) (13)

for some symbol-by-symbol mappings ϕ j : Fq → X j , j ∈ [k].
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Now, consider the virtual channel in (13) and random
homologous codes for this channel. Then, Corollary 2 implies
the following.

Proposition 5: A rate tuple (R1, R2, . . . , Rk) is achiev-
able by random homologous codes in Fq for the DM-MAC
p(y|x1, x2, . . . , xk), if

(R1, R2, . . . , Rk) ∈ RMAC(Xk) ∩ RL(Uk)

for some p(u1), p(u2), . . . , p(uk) on Fq and some mappings
x1 = ϕ1(u1), x2 = ϕ2(u2), . . . , xk = ϕk(uk), where RL(Uk)
is the set of rate tuples (R1, R2, . . . , Rk) satisfying (12) for
the virtual channel p(y|u1, u2, . . . , uk).

We are now ready to extend Theorem 1 to the k-sender
case, which follows from Proposition 5 by optimizing over all
channel transformations.

Theorem 2 (Combination): A rate tuple (R1, R2, . . . , Rk)
is achievable by random homologous codes in some finite field
for the DM-MAC p(y|x1, x2, . . . , xk), if

(R1, R2, . . . , Rk) ∈ RMAC(Xk)

for some p(x1), p(x2), . . . , p(xk).
Proof: We follow similar arguments to the

proof of Theorem 1 and show that given input pmfs
p(x1), p(x2), . . . , p(xk), there exists a finite field Fq ,
pmfs p(u1), p(u2), . . . , p(uk) on Fq , and mappings
x1 = ϕ1(u1), x2 = ϕ2(u2), . . . , xk = ϕk(uk) such that

RMAC(Xk) ⊆ RL(Uk). (14)

First, suppose that p(x j ), j ∈ [k], are of the form i/ρm for
some i, m ∈ Z

+ and prime ρ. We consider random homolo-
gous codes over Fq with q = ρkk m . Let q j = ρk(k− j+1)m for
j ∈ [k] and note that

Fqk ⊂ Fqk−1 ⊂ · · · ⊂ Fq1 = Fq .

Consider U j ∼ Unif(Fq j ), and ϕ j such that ϕ j (U j )
d= X j for

j ∈ [k] (this is possible due to the form of p(x j ) and by the
choice of q j ). To see (14), it suffices to show that for every
matrix A ∈ B, RMAC(Xk) ⊆ ∪J ∈D(A)R̃(A,J , Uk). Consider
a rate tuple (R1, R2, . . . , Rk) ∈ RMAC(Xk) and a matrix A ∈
B. By Lemma 3 (see Appendix G) and by the choice of p(u j ),
there exist at least two different sets J1,J2 ∈ D(A) such that

H (U(J1)) − H (U(J2)) ≥ k log ρm ≥ H (Xk).

Then, (R1, R2, . . . , Rk) satisfies∑
j∈J1

R j < H (Xk)

≤ H (U(J1)) − H (U(J2))

≤ H (U(J1)) − min
S∈D(A)

H (U(S))

≤ H (U(J1)) − min
S∈D(A)

H (U(S)|Y ),

which implies that (R1, R2, . . . , Rk) ∈ R̃(A,J1, Uk). The
claim follows since A is an arbitrary set in B. The restrictions
on the input pmfs can be removed again by the denseness
argument.

VI. MULTIPLE-RECEIVER MULTIPLE

ACCESS CHANNELS

We consider the two-receiver DM-MAC p(y1, y2|x1, x2),
where each sender wishes to convey its own message to both
of the receivers. Given input pmfs p(x1) and p(x2), define
R(1)

MAC(X1, X2) as the set of rate pairs satisfying

R1 ≤ I (X1; Y1|X2),

R2 ≤ I (X2; Y1|X1),

R1 + R2 ≤ I (X1, X2; Y1),

and R(2)
MAC(X1, X2) as the set of rate pairs satisfying

R1 ≤ I (X1; Y2|X2),

R2 ≤ I (X2; Y2|X1),

R1 + R2 ≤ I (X1, X2; Y2).

The following proposition then characterizes the achievable
rate region by random homologous codes.

Proposition 6 (Extension of Theorem 1 to two-receiver):
A rate pair (R1, R2) is achievable by random homologous
codes in some finite field for the two-receiver DM-MAC
p(y1, y2|x1, x2), if

(R1, R2) ∈ R(1)
MAC(X1, X2) ∩ R(2)

MAC(X1, X2)

for some pmfs p(x1) and p(x2).
Proof: The achievable rate region depends on the con-

ditional pmf p(y1, y2|x1, x2) only through the conditional
marginal pmfs p(y1|x1, x2) and p(y2|x1, x1). First suppose
that p(x1) and p(x2) are of the form (9). We consider random
homologous codes over Fq with q = ρ2m . Choose U1 and ϕ1

such that U1 and ϕ1(U1)
d= X1 are one-to-one on the support

of U1 (this is always possible since q ≥ ρm ). Also choose

U2 ∼ Unif(Fq) and ϕ2 such that ϕ2(U2)
d= X2 (this is possible

due to the form of p(x2)). By Proposition 3, the achievable
rate region is

2⋂
j=1

[R( j )
MAC(X1, X2) ∩ R

( j )
L (U1, U2)],

where R
( j )
L (U1, U2), j = 1, 2, is the set of rate pairs (R1, R2)

satisfying (4) or (5) for the virtual DM-MAC p(y j |u1, u2).
The argument in the proof of Theorem 1 can be applied to both
of the DM-MACs p(y1|x1, x2) and p(y2|x1, x2). As a result,
the rate region R

( j )
MAC(X1, X2) ∩ R

( j )
L (U1, U2), j = 1, 2, is

equivalent to the rate region R
( j )
MAC(X1, X2), which implies

the claim. The restriction on the input pmfs can be removed
by the denseness argument.

As shown in the examples of the binary adder MAC, the
binary erasure MAC, and the on–off erasure MAC, the insuffi-
ciency of shaping or channel transformation for single-receiver
MACs can be overcome by time sharing. Indeed, either shap-
ing or channel transformation can achieve the corner points of
RMAC(X1, X2) of a general DM-MAC p(y|x1, x2). This is no
longer the case for multiple receivers, however. As illustrated
by the following example, a proper combination of shaping
and channel transformation can strictly outperform shaping
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Fig. 10. The two-receiver MAC in Example 4.

or channel transformation alone even when time sharing is
allowed only for the individual techniques.

Example 4 (A two-receiver MAC): Let Y1 = X1 + X2
(binary erasure MAC), and Y2 = (2X1 − 1) + Z(2X2 − 1)
(on–off erasure MAC), where X1 = X2 = {0, 1} and Z ∼
Bern(2/3) is independent of X1 and X2. The capacity region
of this two-receiver MAC is achieved by random coding with
i.i.d. Bern(1/2) inputs X1 and X2, and is sketched in Fig. 10a.
Given input pmfs p(x1) and p(x2), the achievable rate region
via shaping in Proposition 1 (and Proposition 4) is

2⋂
j=1

[R( j )
MAC(X1, X2) ∩ R

( j )
L (X1, X2)],

where R
( j )
L (X1, X2), j = 1, 2, is the set of rate pairs (R1, R2)

satisfying (4) or (5) for the DM-MAC p(y j |x1, x2). The
union of this rate region over input pmfs p(x1) and p(x2)
is shown in Fig. 10b. Even after convexification via time
sharing, it is strictly smaller than the capacity region with
the largest symmetric rate of 11/18, whereas the symmetric
capacity is 2/3. In comparison, we can combine shaping
with channel transformation to achieve the entire capacity
region as follows. Consider random homologous codes over
F4 = {0, 1, α, α+1}. Let U1 ∼ Unif(F4) and U2 ∼ Bern(1/2)
be independent. For channel transformation, let x j = ϕ(u j )
where ϕ(0) = ϕ(α) = 0, and ϕ(1) = ϕ(α + 1) = 1. By
this construction, X1 and X2 are i.i.d. Bern(1/2). Following
similar steps to the proof of Proposition 6, it is easy to see that
the achievable rate region under this construction is equivalent
to R(1)

MAC(X1, X2) ∩ R(2)
MAC(X1, X2), which is the capacity

region of this channel since p(x1) and p(x2) are chosen
as the capacity-achieving distributions. Thus, combination of
shaping with channel transformation not only achieves higher
rates than the shaping technique alone, but also achieves the
capacity region without the need for time sharing.

Remark 9: Proposition 6 can be extended to k-sender and
r -receiver DM-MACs and compound MACs via the proof of
Theorem 2.

VII. GAUSSIAN MULTIPLE ACCESS CHANNELS

Consider the 2-sender Gaussian MAC model

Y = g1 X1 + g2 X2 + Z ,

with channel gains g1 and g2, additive noise Z ∼ N(0, 1), and
average power constraints

∑n
i=1 x2

j i(m j ) ≤ n P for j = 1, 2.
Let Sj = g2

j P , j = 1, 2. The following theorem establishes
the achievability of the capacity region of the Gaussian MAC
by random homologous codes.

Theorem 3 (Gaussian MACs): A rate pair (R1, R2) is
achievable by random homologous codes in some finite field
for the 2-sender Gaussian MAC, if

R1 ≤ C(S1),

R2 ≤ C(S2),

R1 + R2 ≤ C(S1 + S2),

where C(x) = (1/2) log(1 + x), x ≥ 0, is the Gaussian
capacity function.

Proof: Theorem 3 can be proved using the discretization
argument in [1, Section 3.4.1] together with the achievability
proof for the 2-sender DM-MAC by random homologous
codes. The proof along this line, however, needs two limit
arguments—one for approximating a Gaussian random vari-
able by a discrete random variable, and one for approximating
the resulting pmf on a finite alphabet to the desired form in
(9). We instead provide a simpler proof via a discretization
mapping that results in a pmf of desired form in (9) and thus
eliminates one of the limit arguments.

Let X1 and X2 be i.i.d. N(0, P). For every j = 1, 2, . . ., let
[X1] j ∈ {F−1

X1
(i/2 j ) : i ∈ [2 j − 1]} be a quantized version of

X1 obtained by mapping X1 to the closest point [X1] j such
that |[X1] j | ≤ |X1|, where FX1(x) denotes the cdf of random
variable X1. Clearly, E([X1]2

j ) ≤ E(X2
1) = P and the pmf of

[X1] j is of the form r/2 j for some positive integer r . Define
[X2] j in a similar manner. Let Y j = g1[X1] j + g2[X2] j + Z
be the output corresponding to the input pair [X1] j and [X2] j ,
and let [Y j ]k be a quantized version of Y j defined in the same
manner. Now, by the achievability proof of Theorem 1, for
every j, k, random homologous codes over Fq with q = 22 j

can achieve the rate pair satisfying

R1 ≤ I ([X1] j ; [Y j ]k |[X2] j ),

R2 ≤ I ([X2] j ; [Y j ]k|[X1] j ),

R1 + R2 ≤ I ([X1] j , [X2] j ; [Y j ]k).

By this type of discretization, weak convergence of [X1] j to
X1 and [X2] j to X2 is preserved, and ([Y j ]k − Y j ) tends to 0
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as k → ∞. Therefore, one can follow the same steps in the
proof of [1, Lemma 3.2] to show that

lim inf
j→∞ lim

k→∞ I ([X1] j ; [Y j ]k |[X2] j ) ≥ I (X1; Y |X2),

lim inf
j→∞ lim

k→∞ I ([X2] j ; [Y j ]k |[X1] j ) ≥ I (X2; Y |X1),

lim inf
j→∞ lim

k→∞ I ([X1] j , [X2] j ; [Y j ]k) ≥ I (X1, X2; Y ),

which establishes the claim.
Remark 10: It is straightforward to extend the discretization

argument described for the 2-sender Gaussian MAC to the
k-sender case. Therefore, the capacity region of a Gaussian
MAC in general is achievable by random homologous codes.

VIII. SIMULTANEOUS COMPUTATION AND

COMMUNICATION OVER MULTIPLE ACCESS CHANNELS

In the previous sections, we have investigated the
performance of homologous codes—which were originally
proposed for computing linear combinations of the transmit-
ted messages/codewords—for message communication over
MACs. One immediate question arising from our investigation
is whether one can use homologous codes for computation and
communication at the same time. To be more specific, consider
a multiple-receiver MAC in which some receiver wishes to
recover a desired linear combination of messages (computa-
tion) while another receiver wishes to recover the messages
themselves (communication). In this section, we demonstrate
how random homologous codes discussed thus far can be
adapted to simultaneously achieve such competing goals,
highlighting the potential of homologous codes for a broader
class of applications beyond multiple access communication.

We first formally define the Fq -computation problem.
Consider a two-sender DM-MAC p(y|x1, x2) with arbitrary
input alphabets X1 and X2. For a given finite field Fq , an
(n, n R1, n R2) code for Fq -computation over the DM-MAC

p(y|x1, x2) consists of two message sets F
nR j
q , j = 1, 2,

two encoders, where encoder j = 1, 2 assigns a codeword
xn

j (m j ) ∈ X n to each message m j ∈ F
nR j
q and transmits

xn
j over the channel, and a decoder that finds an estimate

Ŵ nRmax
a = ŵnRmax

a (Y n) ∈ F
nRmax
q of

W nRmax
a := a1[M1 0n(Rmax−R1)] ⊕ a2[M2 0n(Rmax−R2)] (15)

for a desired (nonzero) vector a = [a1 a2] over Fq , where
Rmax = max j R j . Hence, the goal of communication is to
convey a linear combination of messages rather than the
messages themselves. The probability of error is then defined
as P(n)

e := P(Ŵ nRmax
a �= W nRmax

a ). To eliminate the degenerate
cases, we assume without loss of generality that a1, a2 �= 0.

We start with a discussion on the performance of conven-
tional unstructured codes for the computation problem. Given
an input pmf p = p(x1)p(x2), an (n, n R1, n R2; p) random
i.i.d. code ensemble for Fq -computation over the DM-MAC
p(y|x1, x2) consists of two message sets F

nR1
q and F

nR2
q , two

encoders where encoder j = 1, 2 assigns randomly generated
codewords Xn

j (m j ) that are drawn i.i.d. from
∏n

i=1 pX j (x j i)

to each message m j ∈ F
nR j
q , and a decoder that assigns an

estimate of W nRmax
a ∈ F

nRmax
q to each received yn . We define

the optimal rate region R∗(p) achievable by p-distributed
random i.i.d. codes for Fq -computation as the closure of the
set of rate pairs (R1, R2) such that limn→∞ E[P(n)

e ] = 0. Note
that this rate region corresponds to the largest achievable rate
region that can be proved via the standard i.i.d. random coding
argument.

One can come up with a decoder for random i.i.d. codes that
first estimates the message pair (M1, M2) and then compute
the desired linear combination of codewords. It is easy to see
that by this approach, ∪p(x1),p(x2)RMAC(X1, X2) is achievable.
Indeed, this is the optimal rate region achievable by random
i.i.d. codes in the sense that it cannot be improved by using
the optimal maximum likelihood decoder.

We now formally state this result, the proof of which is
deferred to Appendix H.

Proposition 7 (i.i.d. codes for computation): Given a pmf
p = p(x1)p(x2), the optimal rate region achievable by p-
distributed random i.i.d. codes for Fq -computation is

R∗(p) = RMAC(X1, X2).

We now continue with the construction of random homol-
ogous codes for the Fq -computation. For a given symbol-
by-symbol mappings x j = ϕ j (u j ), j = 1, 2, where ϕ j :
Fq → X j , consider the virtual channel p(y|u1, u2) with
an input pmf p = p(u1)p(u2) over Fq . Given ε > 0, an
(n, n R1, n R̂1, n R2, n R̂2, Fq ; p, ε) random homologous code
ensemble is constructed as in Definition 4 with a slight mod-
ification for computation in the decoder, which now assigns
an estimate ŵnRmax ∈ F

nRmax
q to each received sequence yn . A

rate pair (R1, R2) is said to be achievable by random homol-
ogous codes for Fq -computation if there exists a sequence of
(n, n R1, n R̂1, n R2, n R̂2, Fq ; p, ε) random homologous code
ensembles such that limn→∞ E[P(n)

e ] = 0 for some pmf
p = p(u1)p(u2) and ε > 0, and for some mappings x j =
ϕ j (u j ), j = 1, 2.

In the parlance of homologous codes developed in [8],
when the rates are symmetric, a desired linear combination
of messages can be obtained by recovering a desired linear
combination of [M1 L1] and [M2 L2], which simplifies as
the desired linear combination of the auxiliary codewords Un

j ,
j ∈ [k]. This type of computation over the auxiliary codewords
was studied in [8] and the following result was presented.

Proposition 8 (Homologous codes for computation [8, The-
orem 1]): A rate pair (R1, R2) is achievable by random
homologous codes for Fq -computation of a1Un

1 (M1, L1) ⊕
a2Un

2 (M2, L2) if

R1 ≤ H (U1) − H (a1U1 ⊕ a2U2|Y ), (16a)

R2 ≤ H (U2) − H (a1U1 ⊕ a2U2|Y ), (16b)

for some input pmfs p(u1) and p(u2) over Fq and some
mappings ϕ1(u1) and ϕ2(u2).

Using this result for the computation of W nRmax
a , we can

conclude that a symmetric rate pair (R1, R2) = (R, R) is
achievable by random homologous codes for Fq -computation
if it satisfies (16a) and (16b) for some input pmfs p(u1) and
p(u2) over Fq and some mappings ϕ1(u1) and ϕ2(u2).
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We now consider the two-sender two-receiver DM-MAC
p(y1, y2|x1, x2) and a finite field Fq , where the first receiver
wishes to recover a desired linear combination of messages in
Fq as in (15) and the second receiver wishes to recover the
messages themselves. We refer to this channel as the compute-
communicate DM-MAC.

We start with the performance of random i.i.d. codes.
Given an input pmf p = p(x1)p(x2), let R

( j )
MAC(X1, X2),

j = 1, 2, denote the pentagonal region in (1) evaluated for
the DM-MAC p(y j |x1, x2). We can define the optimal rate
region achievable by p-distributed random i.i.d. codes for the
compute-communicate DM-MAC p(y1, y2|x1, x2) in a similar
manner to the Fq-computation. Using similar steps to the proof
of Proposition 7 yields the following.

Corollary 3 (i.i.d. codes for compute-communicate): Given
a pmf p = p(x1)p(x2), the optimal rate region achiev-
able by p-distributed random i.i.d. codes for the compute-
communicate DM-MAC p(y1, y2|x1, x2) is

R(1)
MAC(X1, X2) ∩ R(2)

MAC(X1, X2).

We then return back to our discussion on random
homologous codes. Given mappings ϕ j : Fq → X j , j = 1, 2,

and input pmf p = p(u1)p(u2), let R(1)
COMP(U1, U2)

denote the rate region in (16) evaluated for the virtual
DM-MAC p(y1|u1, u2), and let R(2)

L (U1, U2) denote the set
of rate pairs (R1, R2) satisfying (4) or (5) for the virtual
DM-MAC p(y2|u1, u2). Propositions 1 and 8 imply the
following.

Corollary 4 (Homologous codes for compute-
communicate): A symmetric rate pair (R1, R2) is achievable
by random homologous codes for the compute-communicate
DM-MAC p(y1, y2|x1, x2) if it is included in

R(1)
COMP(U1, U2) ∩ R(2)

MAC(X1, X2) ∩ R(2)
L (U1, U2) (17)

for some pmfs p(u1) and p(u2) over Fq and some mappings
ϕ1(u1) and ϕ2(u2).

Indeed, it is possible to construct homologous codes over the
extension field Fqr for some positive integer r to enlarge the
achievable rate region in Corollary 4. By allowing extension
fields Fqr for some positive integer r in the channel transfor-
mation step, we get the following.

Corollary 5 (Homologous codes over extension fields): A
symmetric rate pair (R1, R2) is achievable for the compute-
communicate DM-MAC p(y1, y2|x1, x2) if it is included in
the rate region in (17) for some input pmfs p(u1) and p(u2)
over Fqr , for some mappings ϕ j : Fqr → X j , j = 1, 2, and
for some r ∈ Z

+.
The results presented thus far in this section can be extended

to arbitrary number of senders and receivers. As an example,
we consider simultaneous computation and communication
over a two-sender three-receiver DM-MAC and illustrate that
random homologous codes, combined with carefully chosen
channel transformation, outperform random i.i.d. codes as well
as random homologous codes without channel transformation.

Example 5: Consider the compute-communicate DM-MAC
p(y1, y2, y3|x1, x2), where X1 = X2 = {0, 1} and

Y1 = X1 ⊕ X2, (binary adder MAC)

Y2 = X1 + X2, (binary erasure MAC)

Y3 = (2X1 − 1) + Z(2X2 − 1), (on–off erasure MAC)

where Z ∼ Bern(2/3) is independent of X1 and X2. Receiver
1 wishes to recover M1 ⊕ M2 over a binary field F2, whereas
both receivers 2 and 3 wish to recover the message pair
(M1, M2).

We now compare the largest achievable symmetric rate by
different class of codes.

1) Random i.i.d. codes: Corollary 3 implies that the opti-
mal achievable rate region by random i.i.d. codes is the
intersection of the capacity regions of the DM-MACs
p(y1|x1, x2), p(y2|x1, x2), and p(y3|x1, x2), each of
which is achieved by i.i.d. Bern(1/2) inputs X1 and
X2, and so is the intersection. Fig. 11a sketches the rate
region. In particular, the largest possible symmetric rate
achievable by random i.i.d. codes is 1/2.

2) Binary random homologous codes: Since the channel
input are also binary, it corresponds to setting x j =
u j , j ∈ [3] without any channel transformation. By
Corollary 4, for any given input pmfs p(x1) and p(x2)
over F2, a symmetric rate pair (R, R) is achievable if it
is included in

R(1)
COMP(X1, X2) ∩

3⋂
j=2

[R( j )
MAC(X1, X2)

∩R
( j )
L (X1, X2)]. (18)

Note that the rate region R(1)
COMP(X1, X2) is larger than

the rest of the terms in (18) for any given input pmfs
p(x1) and p(x2). Taking the union of the rate region
in (18) over the input pmfs results in the same rate
region sketched earlier in Fig. 10b for the two-receiver
DM-MAC p(y2, y3|x1, x2) and is given in Fig. 11b for
comparison. Therefore, the largest achievable symmetric
rate in this region is 3/5.

3) Quaternary random homologous codes: We are now
allowed to use a larger finite field via channel transfor-
mation, but we need to be more careful for the choice of
channel transformation because we have an additional
receiver decoding for the sum of virtual codewords
rather than the messages themselves. It is easy to see
that the construction proposed for Example 4 results
in H (U2) − H (U1 ⊕ U2|Y1) = 0 and thus it is too
restrictive for the first receiver to directly decode for
Un

1 ⊕ Un
2 . If it decodes for (M1, M2) instead, then the

resulting achievable rate region will be the same as
random i.i.d. codes. Therefore, we introduce a better
construction here. Let U1 ∼ Unif(F4) and

U2 =

⎧⎪⎪⎨
⎪⎪⎩

0 with probability 1−γ
2

1 with probability 1−γ
2

α with probability γ
2

α + 1 with probability γ
2

,
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Fig. 11. Achievable rate regions for the compute-communicate MAC in Example 5.

be independent for some γ chosen such that H (γ ) ∈
[1/3, 2/3]. Let x j = ϕ(u j ) where ϕ(0) = ϕ(α) = 0,
and ϕ(1) = ϕ(α + 1) = 1. By this construction, X1 and
X2 are i.i.d. Bern(1/2). By Corollary 5, for a given γ
and the corresponding pmf p(u1, u2, x1, x2), it is easy
to see that a symmetric rate pair (R1, R2) = (R, R) is
achievable if it satisfies

R1 < 4/3 − H (γ ),

R2 < H (γ ).

Taking the union over γ such that H (γ ) ∈ [1/3, 2/3]
results in the rate region sketched in Fig. 11c. Therefore,
the largest achievable symmetric rate is 2/3, which can
be shown to be the symmetric capacity for this example.

IX. CONCLUDING REMARKS

In this paper, we examined the possibility of reestablish-
ing the well-known achievable rate regions by random code
ensembles for the MAC by using structured, homologous
codes. We clarified two key techniques of shaping and channel
transformation to employ nonuniform codewords while pre-
serving a similar code structure across multiple users. The
analysis tools developed for these techniques seem to indicate
that their individual performance is insufficient. As a construc-
tive alternative to individual techniques and their limitations,
we showed that an appropriately designed combination of the
two can establish the performance of random code ensembles.
This development and its generalization to multiple senders
and receivers motivate further research into the potential of
homologous coding in network information theory.

APPENDIX A
A PROPOSITION ON COSET CODES FOR THE BINARY

ERASURE MAC

Proposition 9: For the binary erasure MAC, no pair of
binary coset codes with the same generator matrix can achieve
the rate pair (1/2 + ε, 1/2 + ε) for ε > 0.

Proof: Let ε > 0 and R1 = R2 = R = 1/2 + ε.
Suppose without loss of generality that n R ∈ Z

+, and that the
generator matrix G is a fixed (not random) full rank n R × n
matrix and does not have an all zero column. Let dn

1 and
dn

2 be two arbitrary fixed binary coset sequences of length n.

The messages M1 and M2 are assumed to be i.i.d. Unif(FnR
2 ).

The received sequence is then written as

Y n = (M1G ⊕ dn
1 ) + (M2G ⊕ dn

2 ).

Define Ỹi = (Yi ) mod 2 for every i ∈ [n], which implies

Ỹ n = (M1 ⊕ M2)G ⊕ (dn
1 ⊕ dn

2 ).

Define the random set S(Ỹ n) = {i : Ỹi = 0}, and let the
random variable N0 = |S(Ỹ n)| denote the number of positions
where sequence Ỹ n has 0. We construct a new (random) matrix
GS of size n R × N0 by including the columns gi of G for
i ∈ S. Note that the randomness in GS is only due to the
randomness of the messages M1 and M2 because the coset
code parameters (G, dn

1 , dn
2 ) are arbitrarily fixed. Then, the

decoder makes an error if the following event occurs

E = {N0 < n R}.
This observation follows from the fact that on E , the dimen-
sion of the null space of GT

S is strictly larger than 0, so
∃ (m1, m2) �= (M1, M2) such that (m1 ⊕ M1)GS = 0 and
m1 ⊕ m2 = M1 ⊕ M2, which leads to the same received
sequence Y n .

By the union of events bound, we have P(n)
e ≥ P(E) =

1 − P(Ec). To bound the probability P(Ec), we define the
coset code C = {xn ∈ F

n
2 : xn = mG ⊕ dn

1 ⊕ dn
2 , m ∈ F

nR
2 }.

Then, Ỹ n is uniformly distributed among C, and we have

P(Ec)
(a)≤ E[N0]

n R

=
∑

xn∈C
P(Ỹ n = xn)wt ((xn)c)

n R

=
∑

xn∈C
2−nRwt ((xn)c)

n R
,

(b)= 2−nR(n2nR−1)

n R
,

= 1

1 + 2ε
,

where function wt : F
n
2 → Z

+ returns the Hamming weight
of the input, (a) follows from Markov’s inequality and (b)
follows from the fact that for a binary coset code C, at a given
index, exactly half of the codewords have 0 and exactly half
of the codewords have 1 (remember that its generator matrix
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G has no all-zero column). It follows that P(n)
e ≥ 2ε

1+2ε , which
proves the claim.

APPENDIX B
EQUIVALENCE OF TWO RATE REGIONS

Lemma 2: Given input pmfs p(x1) and p(x2), let the rate
region R(X1, X2) consist of the set of rate pairs (R1, R2) such
that

min{R1 + H (X2), R2 + H (X1)}
< H (X1) + H (X2) − min{H (X1|Y ), H (X2|Y )}.

The region R(X1, X2) is equivalent to the rate region
RL(X1, X2) described in (4) and (5).

Proof: It is easy to see that R(X1, X2) ⊆ RL(X1, X2). To
see the other direction, let the rate pair (R1, R2) ∈ RL(X1, X2)
such that R1 + H (X2) ≤ R2 + H (X1). By the definition of
the rate region RL(X1, X2), we have

R1 + H (X2)≤max{H (X2) + I (X1; Y ), H (X1) + I (X2; Y )},
which implies that (R1, R2) ∈ R(X1, X2). Similarly, a rate
pair (R1, R2) ∈ RL(X1, X2) such that R2 + H (X1) ≤
R1 + H (X2) is in R(X1, X2). Therefore, RL(X1, X2) ⊆
R(X1, X2), from which the claim follows.

APPENDIX C
THE BINARY ADDER MAC: THE ACHIEVABLE RATE

REGION BY PROPOSITION 1

When specialized to the binary adder MAC, the achievable
rate region in Proposition 1 is reduced to the rate pairs
(R1, R2) such that

R1 < I (X1; Y ),

R2 < I (X2; Y |X1) = H (X2),

or

R1 < I (X1; Y |X2) = H (X1),

R2 < I (X2; Y ),

for some input pmfs p(x1) and p(x2), which is equivalent
to the capacity region depicted in Fig. 1a. To see this, let
α ∈ [0, 1/2], and consider X1 ∼ Bern(α) and X2 ∼ Bern

( 1
2

)
.

Then, the rate pairs (R1, R2) that satisfy

R1 < H (α),

R2 < 1 − H (α)

are achievable, where H (α) denotes the binary entropy func-
tion defined in Section I. Since H (α) is continuous on α, tak-
ing the union over α ∈ [0, 1/2] implies that every point within
the capacity region is achievable by the shaping technique.
It follows from the converse proof for the capacity region
of the binary adder MAC that the achievable rate region in
Proposition 1 (over all input pmfs) is indeed equivalent to the
capacity region.

APPENDIX D
THE BINARY ERASURE MAC

1) The Achievable Rate Region by Proposition 1: For the
binary erasure MAC, we will evaluate the rate region in
Proposition 1. Let α, β ∈ [0, 1/2], and consider X1 ∼ Bern(α)
and X2 ∼ Bern(β). By Proposition 1, the set of rate pairs
(R1, R2) such that

R1 < I (X1; Y ) = f (α, β),

R2 < I (X2; Y |X1) = H (β),

or

R1 < I (X1; Y |X2) = H (α),

R2 < I (X2; Y ) = f (β, α),

is achievable, where the function f : [0, 1/2] × [0, 1/2] → R

is defined as

f (x, y) = H (x) − y(1 − x) log

(
1 + x

1 − x

1 − y

y

)

− x(1 − y) log

(
1 + 1 − x

x

y

1 − y

)
. (19)

Since f (x, y) is increasing on x for any y ∈ [0, 1/2], the
union of such regions over α, β ∈ [0, 1/2] is the set of rate
pairs (R1, R2) satisfying

R1 < 1 − H (α)

2
,

R2 < H (α),

or

R1 < H (α),

R2 < 1 − H (α)

2
,

for some α ∈ [0, 1/2]. By the fact that H (α) ∈ [0, 1] is
continuous on α, this union is equivalent to the union of two
trapezoids defined by

R2 < 1,

2R1 + R2 < 2,

and

R1 < 1,

R1 + 2R2 < 2,

which proves the claim.
2) The Achievable Rate Region by Corollary 1: For the

binary erasure MAC, we will evaluate the rate region in
Corollary 1. Let α, β ∈ [0, 1/2], and consider X1 ∼ Bern(α)
and X2 ∼ Bern(β). By Corollary 1, the set of rate pairs
(R1, R2) such that

R1 < min{I (X1; Y |X2), max[I (X1; Y ), I (X2; Y )]}
= min{H (α), max[ f (α, β), f (β, α)]},

R2 < I (X2; Y |X1) = H (β),

R1 + R2 < I (X1, X2; Y )

= H (α) + f (β, α) = H (β) + f (α, β),

(20)
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or

R1 < I (X1; Y |X2) = H (α),

R2 < min{I (X2; Y |X1), max[I (X1; Y ), I (X2; Y )]}
= min{H (β), max[ f (α, β), f (β, α)]},

R1 + R2 < I (X1, X2; Y )

= H (α) + f (β, α) = H (β) + f (α, β),

(21)

is achievable, where the function f is as defined in (19). First,
consider the union of such regions over α, β ∈ [0, 1/2] such
that α ≥ β (or equivalently f (α, β) ≥ f (β, α)), which results
in the rate region defined by

R1 < f (α, β),

R2 < H (β),

or

R1 < H (α),

R2 < min{H (β), f (α, β)},
R1 + R2 < H (β) + f (α, β),

for some α, β ∈ [0, 1/2] such that α ≥ β. Since f (x, y) is
increasing over x for any y ∈ [0, 1/2], the resulting region
consists of the rate pairs (R1, R2) satisfying

R1 < f (1/2, β) = 1 − H (β)

2
,

R2 < H (β),
(22)

or

R1 < 1,

R2 < min{H (β), 1 − H (β)

2
},

R1 + R2 < 1 + H (β)

2
,

(23)

for some β ∈ [0, 1/2]. The union of the rate region defined
in (22) over β ∈ [0, 1/2] is equivalent to the trapezoid defined
by R2 < 1, and 2R1 + R2 < 2. The union of the rate region
defined in (23) over β ∈ [0, 1/2] is clearly included in the
trapezoid defined by R1 < 1, R1 + 2R2 < 2.

By similar arguments, the union of the rate region defined
in (20) and (21) over α, β ∈ [0, 1/2] such that β ≥ α, is
reduced to the rate pairs (R1, R2) such that

R1 < min{H (α), 1 − H (α)

2
},

R2 < 1,

R1 + R2 < 1 + H (α)

2
,

or

R1 < H (α),

R2 < 1 − H (α)

2
,

for some α ∈ [0, 1/2]. By symmetry, the overall achievable
rate region in Corollary 1 is equivalent to the union of two
trapezoids defined by R2 < 1, 2R1 + R2 < 2 and R1 < 1,
R1 + 2R2 < 2.

APPENDIX E
THE ON–OFF ERASURE MAC

3) The Achievable Rate Region by Proposition 1: For the
on–off erasure MAC, we will evaluate the achievable rate
region in Proposition 1. If the channel parameter p ≤ 2/3,
it is easy to see that i.i.d. Bern(1/2) inputs X1 and X2
can achieve the capacity region in Fig. 5a. Suppose that
p > 2/3. Let α, β ∈ [0, 1/2], and consider X1 ∼ Bern(α)
and X2 ∼ Bern(β). Then, by Proposition 1, the set of rate
pairs (R1, R2) such that

R1 < I (X1; Y ) = (1 − p)H (α) + p f (α, β),

R2 < I (X2; Y |X1) = pH (β),
(24)

or

R1 < I (X1; Y |X2) = H (α),

R2 < min{I (X2; Y |X1),

H (X2) − H (X1) + I (X1; Y )}
= min{pH (β), (1 − p)H (β) + p f (β, α)},

R1 + R2 < H (α) + pf (β, α),

(25)

is achievable, where function f is as defined in (19). First,
consider the union of the rate region defined in (24) over
α, β ∈ [0, 1/2]. Since f (x, y) is increasing on x for every
y ∈ [0, 1/2], the union is equivalent to the set of rate pairs
(R1, R2) satisfying

R1 < 1 − p + p

(
1 − H (β)

2

)
= 1 − pH (β)

2
,

R2 < pH (β),

for some b ∈ [0, 1/2], that reduces to the trapezoid defined
by R2 < p and 2R1 + R2 < 2.

Second, we consider the union of the rate region defined in
(25) over α, β ∈ [0, 1/2]. By similar arguments, the union is
equivalent to the set of rate pairs (R1, R2) such that

R1 < H (α),

R2 < min{p, 1 − pH (α)

2
},

R1 + R2 < p + H (α)
(

1 − p

2

)
,

for some α ∈ [0, 1/2], that is equivalent to the hexagon defined
by R1 < 1, R2 < p, R1 + R2 < 1+ p/2, and (p/2)R1 + R2 <
1 − (p/2) + (p2)/2.

4) The Achievable Rate Region by Corollary 1: For the on–
off erasure MAC, we will evaluate the achievable rate region in
Corollary 1. Again, if the channel parameter p ≤ 2/3, it is easy
to see that i.i.d. Bern(1/2) inputs X1 and X2 can achieve the
capacity region in Fig. 5a. Suppose that p > 2/3. Let α, β ∈
[0, 1/2], and consider X1 ∼ Bern(α) and X2 ∼ Bern(β).
Then, by Corollary 1, the set of rate pairs (R1, R2) such that

R1 < I (X1; Y |X2) = H (α), (26a)

R1 < max{I (X1; Y ), I (X2; Y )} (26b)

= max{pf (α, β) + (1 − p)H (α), pf (β, α)},
R2 < I (X2; Y |X1) = pH (β), (26c)

R1 + R2 < I (X1, X2; Y ) = H (α) + p f (β, α), (26d)
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or

R1 < I (X1; Y |X2) = H (α),

R2 < I (X2; Y |X1) = pH (β),

R2 < max{I (X1; Y ), I (X2; Y )}
= max{p f (α, β) + (1 − p)H (α), pf (β, α)},

R1 + R2 < I (X1, X2; Y ) = H (α) + p f (β, α),

(27)

is achievable, where the function f is as defined in (19). First,
consider the union of the rate region defined in (26) over
α, β ∈ [0, 1/2] such that H (α) > pH (β) (or equivalently
p f (α, β) + (1 − p)H (α) > p f (β, α)). Then, the inequalities
in (26a) and (26d) are inactive. Since f (x, y) is increasing
on x for every y ∈ [0, 1/2], the union is equivalent to the set
of rate pairs (R1, R2) satisfying

R1 < p

(
1 − H (β)

2

)
+ (1 − p) = 1 − pH (β)

2
,

R2 < pH (β),

for some β ∈ [0, 1/2], that reduces to the trapezoid defined
by R2 < p and 2R1 + R2 < 2. It is easy to see that the union
of the rate region defined in (26) over α, β ∈ [0, 1/2] such
that H (α) ≤ pH (β) is included in this trapezoid.

Second, we consider the union of the rate region defined
in (27) over α, β ∈ [0, 1/2] such that H (α) > pH (β). By
similar arguments, the union is equivalent to the set of rate
pairs (R1, R2) such that

R1 < 1,

R2 < min{pH (β), 1 − pH (β)

2
},

R1 + R2 < 1 + p

2
H (β),

for some β ∈ [0, 1/2], that is equivalent to the hexagon defined
by R1 < 1, R2 < 2/3, R1 + R2 < 1+ p/2, and R1 +2R2 < 2.
Finally, it is easy to see that the union of the rate region defined
in (27) over α, β ∈ [0, 1/2] such that H (α) ≤ pH (β) is
equivalent to the trapezoid defined by R1 < p and (p/2)R1 +
R2 < p.

APPENDIX F
PROOF OF PROPOSITION 2

Proof: We use a pair of (n, n R1, Fq ) and (n, n R2, Fq)
random coset code ensembles constructed for the virtual
channel p(y|u1, u2) as follows. A generator matrix G ∈
F

n max{R1,R2}×n
q and coset leaders Dn

1 and Dn
2 are randomly

generated by drawing each entry i.i.d. Unif(Fq). Given the

realizations of G, dn
1 and dn

2 , for every message m j ∈ F
nR j
q ,

encoder j = 1, 2 then assigns

un
j (m j ) = [m j 0n(max{R1,R2}−R j )]G + dn

j .

Upon receiving yn , the decoder first fixes an ε > 0
and then searches a unique pair of (m̂1, m̂2) such that
(un

1(m̂1), un
2(m̂2), yn) ∈ T (n)

ε (U1, U2, Y ), where U1 and U2
are i.i.d. Unif(Fq). If the decoder finds the unique pair,
then it declares that (m̂1, m̂2) was transmitted. Otherwise,
it declares error. Assume that (M1, M2) is the transmitted

message pair. We bound the probability of error E[P(n)
e ] aver-

aged over (M1, M2) and (G, Dn
1 , Dn

2 ). The code construction
is symmetric with respect to the transmitted message pair.
Therefore, E[P(n)

e ] = E[P(n)
e |(M1, M2) = (0, 0)] and without

loss of generality, we can assume that (M1, M2) = (0, 0). The
decoder makes an error only if one or more of the following
events occur:

E1 = {(Un
1 (0), Un

2 (0), Y n) /∈ T (n)
ε (U1, U2, Y )},

E2 = {(Un
1 (0), Un

2 (m2), Y n) ∈ T (n)
ε (U1, U2, Y )

for some m2 �= 0},
E3 = {(Un

1 (m1), Un
2 (0), Y n) ∈ T (n)

ε (U1, U2, Y )

for some m1 �= 0},
E4 = {(Un

1 (m1), Un
2 (m2), Y n) ∈ T (n)

ε (U1, U2, Y )

for some m1 �= 0, m2 �= 0 such that

[m1 0] and [m2 0] are linearly independent},
E5 = {(Un

1 (m1), Un
2 (m2), Y n) ∈ T (n)

ε (U1, U2, Y )

for some m1 �= 0, m2 �= 0 such that

[m1 0] and [m2 0] are linearly dependent}.

Thus, by the union of events bound, E[P(n)
e ] ≤ ∑5

k=1 P(Ek).
Since Un

1 (0) = Dn
1 and Un

2 (0) = Dn
2 are i.i.d. Unif(Fn

q) and
independent from each other, by the law of large numbers,
P(E1

∣∣(M1, M2) = (0, 0)) tends to zero as n → ∞. For the
second term, note that for m2 �= 0, Un

2 (m2) ∼ ∏n
i=1 pU2(u2i )

is independent of (Un
1 (0), Y n) ∼ ∏n

i=1 pU1,Y (u1i , yi ). Hence,
by the packing lemma in [1, Section 3.2], P(E2) tends to
zero as n → ∞ if R2 ≤ I (U2; U1, Y ) − δ(ε). Changing the
role of sender 1 and 2, P(E3) tends to zero as n → ∞ if
R1 ≤ I (U1; U2, Y ) − δ(ε). For the forth term, note that if
m1 �= 0 and m2 �= 0 are linearly independent, then by [19,
Lemma 14], (Un

1 (m1), Un
2 (m2)) ∼ ∏n

i=1 pU1(u1i)pU2(u2i );
i.e., linear independence implies statistical independence.
Moreover, in this case, the pair (Un

1 (m1), Un
2 (m2)) is

independent from the tuple (Un
1 (0), Un

2 (0), Y n). Hence, again
by the packing lemma P(E4) tends to zero as n → ∞ if
R1 + R2 ≤ I (U1, U2; Y ) − δ(ε).

Due to linear dependency among Un
1 (m1) and Un

2 (m2),
to bound the last term, we will use a similar technique in
Lemma 1. Define the rate R = min{R1, R2} and the set

D = {(m1, m2) ∈ F
nR1
q × F

nR2
q :

[m1 0] �= 0 and [m2 0] �= 0 are linearly dependent}.
Then,

P(E5)

= P((Un
1 (m1), Un

2 (m2), Y n) ∈ T (n)
ε (U1, U2, Y )

for some (m1, m2) ∈ D)

(a)≤
∑

(m1,m2)
∈D

P((Un
1 (m1), Un

2 (m2), Y n) ∈ T (n)
ε (U1, U2, Y ))

≤
∑

(m1,m2)∈D
P((Un

2 (m2), Y n) ∈ T (n)
ε (U2, Y ))

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on February 15,2020 at 06:50:26 UTC from IEEE Xplore.  Restrictions apply. 



SEN AND KIM: HOMOLOGOUS CODES FOR MULTIPLE ACCESS CHANNELS 1569

=
∑

(m1,m2)∈D

∑
(un

2 ,yn )∈
T (n)

ε (U2,Y )

P(Un
2 (m2) = un

2, Y n = yn)

=
∑

(m1,m2)∈D

∑
(un

2 ,yn )∈
T (n)

ε (U2,Y )

∑
ũn

1∈F
n
q ,

ũn
2∈F

n
q

P(Un
2 (m2) = un

2, Y n = yn, Un
1 (0) = ũn

1, Un
2 (0) = ũn

2)

=
∑

(m1,m2)∈D

∑
(un

2 ,yn )∈
T (n)

ε (U2,Y )

∑
ũn

1∈F
n
q ,

ũn
2∈F

n
q

P([m2 0]G + Dn
2 = un

2, Dn
1 = ũn

1, Dn
2 = ũn

2, Y n = yn)

(b)=
∑

(m1,m2)∈D

∑
(un

2 ,yn )∈
T (n)

ε (U2,Y )

∑
ũn

1∈F
n
q ,

ũn
2∈F

n
q

P([m2 0]G + Dn
2 = un

2, Dn
1 = ũn

1, Dn
2 = ũn

2)p(yn|ũn
1, ũn

2)

(c)=
∑

(m1,m2)∈D

∑
(un

2 ,yn )∈
T (n)

ε (U2,Y )

∑
ũn

1∈F
n
q ,

ũn
2∈F

n
q

q−3n p(yn|ũn
1, ũn

2)

=
∑

(m1,m2)∈D

∑
(un

2 ,yn )∈
T (n)

ε (U2,Y )

q−n p(yn|ũn
1, ũn

2)

≤
∑

(m1,m2)∈D

∑
yn∈T (n)

ε (Y )

p(yn|ũn
1, ũn

2)
∑

un
2∈T (n)

ε (U2|yn)

q−n

≤ |D| qn(H(U2|Y )+δ(ε))q−n

(d)≤ qn(R−I (U2;Y )+δ(ε)),

where (a) follows by the union of events bound, (b) follows
since under the assumption that (M1, M2) = (0, 0), the the
triple G → (Dn

1 , Dn
2 ) → Y n form a Markov chain, (c) follows

since m2 �= 0 and the entries of G, Dn
1 and Dn

2 are chosen
i.i.d., and (d) follows since H (U2) = 1 and |D| ≤ qqnR . By
changing the order of Un

1 and Un
2 , we can conclude that

P(E5) ≤ qn(R−max{I (U1;Y ),I (U2;Y )}+δ(ε)),

which tends to zero as n → ∞ if R = min{R1, R2} <
max{I (U1; Y ), I (U2; Y )} − δ(ε).

Letting ε → 0 yield that the rate pairs (R1, R2) is
achievable if

R1 < I (U1; Y |X2),

R2 < I (U2; Y |X1),

R1 + R2 < I (U1, U2; Y ),

min{R1, R2} < max{I (U1; Y ), I (U2; Y )}.

APPENDIX G
A VARIATION OF STEINITZ LEMMA

Lemma 3: Suppose that Z = {z1, z2, . . . , zr } is a set of
linearly independent vectors in a vector space V of dimension
k > r , and W = {w1, w2, . . . , wk} span V . Let T ⊆ W be a
set such that

i) |T | = k − r , and
ii) Z ∪ T span V .

(The existence of such T is guaranteed by the Steinitz Lemma
in [27]). Then, for a given set J ⊆ W with |J | = r , T = W \ J
is the unique subset of W satisfying i) and ii) if and only if
span(Z) = span(J ).

Proof: Let J ⊆ W with |J | = r . First suppose that
span(Z) = span(J ). Then, it is easy to see that T = W \ J
is the only subset of W that satisfies i) and ii). Now, suppose
that T = W \ J is the unique subset of W that satisfies i) and
ii). We will show that

span(Z) = span(J ).

Both Z and J consist of r linearly independent vectors, so
it suffices to show that for every w ∈ J , w ∈ span(Z). Let
w ∈ J . Since Z ∪ T span V , we have

w =
r∑

l=1

alzl +
∑
wi ∈T

biwi . (28)

We want to show that bi = 0 for all wi ∈ T in (28). Assume
to the contrary that bm �= 0 for some wm ∈ T . Then we can
write wm as a linear combination of the vectors in Z ∪ T \
{wm} ∪ {w}. Note that w �= wm since J and T are disjoint.
Thus, T ′ := T \ {wm} ∪ {w} also satisfies i) and ii), which
contradicts with the uniqueness of T . The claim follows since
w ∈ J is arbitrary.

APPENDIX H
PROOF OF PROPOSITION 7

An inner bound on the rate region in Proposition 7 follows
by standard arguments. We prove an outer bound by showing
that if a rate pair (R1, R2) is achievable by random i.i.d. codes,
then it must be in RMAC(X1, X2) for some input pmfs p(x1)
and p(x2).

Fix an input pmf p = p(x1)p(x2) and consider an
(n, n R1, n R2; p) random i.i.d. code ensemble. Define random
codebook as

Cn = {(Xn
1(m1), Xn

2 (m2) : m1 ∈ F
nR1
q , m2 ∈ F

nR2
q },

which consists of the codewords in the ensemble. Assume
without loss of generality that R1 ≥ R2. Let W nR1

a := a1M1 ⊕
a2[M2 0] denote the desired linear combination. Suppose that
the ensemble satisfies limn→∞ E[P(n)

e (Cn)] = 0, where the
expectation is taken over the random codebook Cn . For a fixed
codebook Cn = Cn , by Fano’s inequality

H (W nR1
a |Y n, Cn = Cn) ≤ 1 + n P(n)

e ( Cn).

Taking the expectation over the random codebook Cn , we have

H (W nR1
a |Y n, Cn) ≤ 1 + n E[P(n)

e (Cn)] (a)≤ nεn, (29)

where (a) follows since E[P(n)
e (Cn)] tends to zero as n → ∞.

We start with

n R1 = H (M1|M2, Cn)

≤ I (M1; Y n|M2, Cn) + H (M1, W nR1
a |Y n, M2, Cn)

(a)≤ I (M1; Y n|M2, Cn) + nεn
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=
n∑

i=1

I (M1; Yi |Y i−1, M2, Cn, X2i ) + nεn

≤
n∑

i=1

I (M1, X1i , Y i−1, M2, Cn; Yi |X2i ) + nεn

(b)=
n∑

i=1

I (X1i ; Yi |X2i ) + nεn

(c)= nI (X1; Y |X2) + nεn, (30)

where (a) follows by the modified Fano’s inequality in (29),
(b) follows since (M1, M2, Y i−1, Cn) → (X1i , X2i ) → Yi

form a Markov chain for every i ∈ [n], and (c) follows by the
i.i.d. codebook generation.

Following similar steps, it is easy to show that n R2 ≤
nI (X2; Y |X1) + nεn . For the sum rate bound, we start with

n(R1 + R2)

= H (M1, M2|Cn)

≤ I (M1, M2; Y n|Cn) + H (M1, M2, W nR1
a |Y n, Cn)

(a)≤ I (M1, M2; Y n|Cn) + H (M1, M2|W nR1
a Y n, Cn) + nεn

= I (M1, M2; Y n|Cn) + H (M2|W nR1
a Y n, Cn) + nεn, (31)

where (a) follows by the modified Fano’s inequality in (29).
The first term in (31) can be bounded by using similar
arguments to the proof of (30) to get

I (M1, M2; Y n|Cn) ≤ nI (X1, X2; Y ). (32)

We now bound the second term in (31) using a similar
argument to [9], [28]. Given W nR1

a , Y n , and Cn , a relatively
short list L ⊆ F

nR2
q can be constructed that contains M2 with

high probability. Let ε > 0 and define a random set

L =
{

m ∈ F
nR2
q :

(
Xn

1

(W nR1
a 
 a2[m 0]

a1

)
, Xn

2 (m), Y n
)

∈ T (n)
ε (X1, X2, Y )

}
.

By the symmetry of the codebook generation, assume without
loss of generality that M1 = 0 and M2 = 0 was transmitted.
For each m ∈ F

nR2
q , m �= 0, we have

P(m ∈ L) = P(m ∈ L|M1 = 0, M2 = 0)

= P
((

Xn
1

(
− a2

a1
m
)
, Xn

2 (m), Y n
)

∈ T (n)
ε (X1, X2, Y )|M1 = 0, M2 = 0

)
≤ q−n(I (X1,X2;Y )−δ(ε)),

where the last step follows by the packing lemma since
Xn

1 (−a2/a1m) and Xn
2 (m) are independent from each other

and are independent from Y n . The expected cardinality of the
set L is then bounded as

E(|L|)
≤ 1 +

∑
m �=0

P(m ∈ L) ≤ 1 + qn(R2−I (X1,X2;Y )+δ(ε)). (33)

Define an indicator random variable En = �{M2∈L}. By the
conditional typicality lemma in [1, p. 27], P(En = 1) tends
to one as n → ∞. Then, for n sufficiently large, we have

H (M2|W nR1
a , Y n, Cn)

= H (M2|W nR1
a , Y n, Cn, En) + I (M2; En|W nR1

a , Y n, Cn)

≤ H (M2|W nR1
a , Y n, Cn, En) + 1

≤ 1 + P(En = 0)H (M2|W nR1
a , Y n, Cn, En = 0)

+ H (M2|W nR1
a , Y n, Cn, En = 1)

≤ 1 + n R2 P(En = 0) + H (M2|W nR1
a , Y n, Cn, En = 1).

We now use the fact that if M2 ∈ L, then the conditional
entropy cannot exceed log(|L|):

H (M2|W nR1
a ,Y n, Cn, En = 1)

(a)= H (M2|W nR1
a , Y n, Cn, En = 1,L, |L|)

≤ H (M2|En = 1,L, |L|)

≤
qnR2∑
l=0

P(|L| = l)H (M2|En = 1,L, |L| = l)

≤
qnR2∑
l=0

P(|L| = l) log(l)

(b)≤ log(E[|L|])
(c)≤ max{0, n(R2 − I (X1, X2; Y ) + δ(ε))},

where (a) follows since the set L and its cardinality |L| are
functions of (W nR1

a , Y n, Cn), (b) follows by Jensen’s inequal-
ity, and (c) follows by (33) and the soft-max interpretation of
the log-sum-exp function [29, p. 72]. Substituting back gives

n(R1 + R2)

≤ nI (X1, X2; Y ) + 1 + n R2 P(En = 0)

+ H (M2|W nR1
a , Y n, Cn, En = 1) + nεn

≤ nI (X1, X2; Y ) + 1 + n R2 P(En = 0)

+ max{0, n(R2 − I (X1, X2; Y ) + δ(ε))} + nεn

= n max{I (X1, X2; Y ), R2 + δ(ε)} + 2nεn, (34)

where the last step follows since P(En = 0) tends to zero as
n → ∞. Combining (30), (31), (32), and (34) and letting ε →
0 implies that (R1, R2) ∈ RMAC(X1, X2), which completes
the proof.
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