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On the Optimal Achievable Rates for Linear
Computation With Random Homologous Codes
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Abstract— The problem of computing a linear combination
of sources over a multiple access channel is studied. Inner and
outer bounds on the optimal tradeoff between the communication
rates are established when encoding is restricted to random
ensembles of homologous codes, namely, structured nested coset
codes from the same generator matrix and individual shaping
functions, but when decoding is optimized with respect to the
realization of the encoders. For the special case in which the
desired linear combination is “matched” to the structure of the
multiple access channel in a natural sense, these inner and outer
bounds coincide. This result indicates that most, if not all, coding
schemes for computation in the literature that rely on random
construction of nested coset codes cannot be improved by using
more powerful decoders such as the maximum likelihood decoder.
The proof techniques are adapted to characterize the rate region
for broadcast channels achieved by Marton’s (random) coding
scheme under maximum likelihood decoding. By generalizing
some of the techniques, a single-letter outer bound for the
capacity region of the computation problem is presented and
compared with the inner bound achieved by homologous codes.

Index Terms— Multiple access channel, broadcast channel,
structured coding, linear code, maximum likelihood decoding,
simultaneous decoding, Marton’s coding.

I. INTRODUCTION

CONSIDER a multiple access channel (MAC) with two
senders and one receiver, in which the receiver wishes

to reliably estimate a linear function of transmitted codewords
from the senders (see Figure 1). One trivial approach to
this computation problem involves two steps: first recover
the individual codewords and then compute the function from
the recovered codewords. When the problem is isolated to the
first communication step of this plug-in approach, using the
conventional random independently and identically distributed
(i.i.d.) code ensembles achieves the optimal rates of commu-
nicating independent codewords [1], [2]. For the problem as
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a whole, however, the use of random i.i.d. code ensembles
is strictly suboptimal even for a trivial MAC. The earlier
studies on computation concentrated on recovering/utilizing
a linear combination of messages at the receiver. As shown
by Körner and Marton [3] for the problem of encoding a
modulo-two sum of distributed dependent binary sequences,
using the same random ensemble of linear codes at multiple
encoders can achieve strictly better rates than using inde-
pendently generated ensembles of codes. Building on this
observation, Nazer and Gastpar [4] developed a channel coding
scheme that uses the same random ensemble of linear codes
at multiple encoders and showed that this structured coding
scheme outperforms conventional random coding schemes for
computing a linear combination of transmitted messages over
a linear MAC. This influential work led to the development of
the compute–forward strategy for relay networks [5]–[7]. Over
the past decade, the compute–forward strategy based on lattice
codes for Gaussian channels and its extensions have shown
to provide higher achievable rates for several communication
problems over relay networks [5]–[11].

More recently, nested coset codes [12], [13] were proposed
as more flexible alternatives for achieving the desired linear
structure at multiple encoders. In particular, Padakandla and
Pradhan [13] developed a fascinating coding scheme for
the computation problem of transmitted messages over an
arbitrary MAC. In this coding scheme, a coset code with a
rate higher than the target (message) rate is first generated
randomly. Next, in the shaping step, a codeword of a desired
property (such as type or joint type) is selected from a subset of
codewords (a coset of a subcode). Although reminiscent of the
multicoding scheme of Gelfand and Pinsker [14] for channels
with state, and Marton’s coding scheme [15] for broadcast
channels, this construction is more fundamental in some sense,
since the scheme is directly applicable even for classical point-
to-point communication channels. A similar shaping technique
was also developed for lattice codes in [16]. For multiple
encoders, the desired common structure is obtained by using
coset codes with the same generator matrix. Recent efforts
exploited the benefit of such constructions for a broader
class of channel models, such as interference channels [17],
[18], multiple access channels [19], [20], and multiple access
channels with state [21].

In those earlier studies, message computation at the receiver
is closely related (if not equivalent) to codeword computation
due to the underlying linearity shared among users’ codebooks.
Motivated by the physical meaning of compute–forward and
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Fig. 1. Linear computation over two-sender multiple access channel.

interference alignment, where a linear combination of code-
words is to be utilized at the receiver to cancel out the
interfering codewords, Lim, Feng, Pastore, Nazer, and Gast-
par [22], [23] tackled codeword computation and generalized
the nested coset codes constructed with the same generator
matrix to asymmetric rate pairs. We referred to this gener-
alized version, together with the shaping step, as homolo-
gous codes [19], [20], [24]. This terminology is motivated
from its biological definition, i.e., the structures modified
from the same ancestry (underlying linear code) to adapt
to different purposes (desired shape). Lim et al. [22], [23]
further analyzed simultaneous decoding of random ensembles
of homologous codes and showed that it can achieve rates
higher than existing approaches to computation problems. For
instance, when adapted to the Gaussian MAC, the resulting
achievable rates improve upon those of lattice codes [7].
With mathematical rate expressions in single-letter mutual
information terms that work for a general memoryless channel
and result in better performances than those of lattice codes
for Gaussian channels, homologous codes have a potential to
bringing a deeper understanding of the fundamental limits of
the computation problem.

Several open questions remain, however. What is the opti-
mal tradeoff between achievable rates for reliable compu-
tation? Which scheme achieves this computation capacity
region? The answers require joint optimization of encoder and
decoder designs, which seems to be intractable as in many
other network information theory problems.

In this paper, we instead concentrate on the performance of
the optimal maximum likelihood decoder when the encoder is
restricted to a given random ensemble of homologous codes.
We characterize the optimal rate region when the desired linear
combination and the channel structure are “matched” (see
Definition 1 in Section III), which is the case in which the
benefit of computation can be realized to the fullest extent
as indicated by [25]. This result, inter alia, implies that the
suboptimal joint typicality decoding rule proposed in [22], [23]
achieves this optimal rate region. Thus, the performance of
random ensembles of homologous codes cannot be improved
by the maximum likelihood decoder.

The main contribution lies in the outer bound on the optimal
rate region (Theorem 3), which characterizes the necessary
condition that a rate pair must satisfy if the average probability
of decoding error vanishes asymptotically. The proof of this
bound relies on two key observations. First, the distribution
of a given random ensemble of homologous codes converges
asymptotically to the product of the desired input distribu-
tion. Second, given the channel output, a relatively short list
of messages can be constructed that includes the actually

transmitted message with high probability. The second obser-
vation, which is adapted from the analysis in [26] for the
optimal rate region of interference networks with random i.i.d.
code ensembles, seems to be a recurring path to establishing
the optimal performance of random code ensembles.

As hinted earlier, the construction of random ensemble of
homologous codes has many similarities to Marton’s coding
scheme [15], one of the fundamental coding schemes in
network information theory. As a result, adapting the proof
techniques that we developed for homologous codes, we can
establish an outer bound on the optimal rate region for broad-
cast channels with Marton’s coding scheme (Proposition 2).
The resulting outer bound coincides with the inner bound
that is achieved by simultaneous nonunique decoding, thus
characterizing the optimal rate region of a two-receiver general
broadcast channel achieved by a given random code ensemble.

The rest of the paper is organized as follows. Section II
formally defines the computation problem. Section III presents
the main result of the paper—the optimal rate region achiev-
able by a random ensemble of homologous codes. The inner
and the outer bounds on this region are presented in Sec-
tions IV and V, respectively. Section VI establishes the optimal
rate region for a broadcast channel achievable by Marton’s
coding scheme. Section VII concludes the paper with some
discussion on the capacity region of computation problem
by providing a single-letter outer bound for a given (fixed)
computation code and comparing it to the inner bound that is
achieved by homologous codes.

We adapt the notation in [27], [28]. The set of integers
{1, 2, . . . , n} is denoted by [n]. For a length-n sequence (row
vector) xn = (x1, x2, . . . , xn) ∈ Xn, we define its type as
π(x|xn) = |{i : xi = x}|/n for x ∈ X . Upper case letters
X, Y, . . . denote random variables. For ε ∈ (0, 1), we define
the ε-typical set of n-sequences (or the typical set in short)
as T (n)

ε (X) = {xn : |p(x) − π(x|xn)| ≤ εp(x), x ∈ X}. The
indicator function �S : X → {0, 1} for S ⊆ X is defined as
�S(x) = 1 if x ∈ S and 0 otherwise. A length-n row vector
of all zeros is denoted by 0n, where the subscript is omitted
when it is clear from the context. We denote by Fq a finite
field of size q, F

∗
q is the set of nonzero elements in Fq , and

F
d
q is the d-dimensional vector space over Fq. The limit of a

collection of sets {A(ε)} indexed by ε > 0 is defined as

lim
ε→0
A(ε) :=

⋃
ε>0

⋂
0<γ<ε

A(γ)
(a)
=

⋂
ε>0

⋃
0<γ<ε

A(γ), (1)

which exists if (a) holds. The closure cl(A) of a set A ⊆ R
d

denotes the smallest closed superset of A. The convex hull
conv(A) of a set A denotes the smallest convex and closed
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superset of A. We use εn ≥ 0 to denote a generic sequence
of n that tends to zero as n → ∞, and use δi(ε) ≥ 0,
i ∈ Z

+, to denote a continuous function of ε that tends to
zero as ε→ 0. For the q-ary computation problem studied in
Sections II through V, information measures are in logarithm
base q.

II. FORMAL STATEMENT OF THE PROBLEM

Consider the two-sender finite-field input memoryless mul-
tiple access channel (MAC)

(X1 ×X2, p(y |x1, x2),Y)

in Figure 1, which consists of two sender alphabets X1 =
X2 = Fq , a receiver alphabet Y , and a collection of conditional
probability distributions pY |X1,X2(y|x1, x2). Each sender j =
1, 2 encodes a message Mj ∈ F

nRj
q into a codeword Xn

j =
xn

j (Mj) ∈ F
n
q and transmits Xn

j over the channel. Here
and henceforth, we assume without loss of generality that
nR1 and nR2 are integers. The goal of communication is to
convey a linear combination of the codewords. Hence, upon
receiving the sequence Y n, the decoder finds an estimate
Ŵn

a = ŵn
a (Y n) ∈ F

n
q of

Wn
a := a1 Xn

1 ⊕ a2 Xn
2

for a desired (nonzero) vector a = [a1 a2] over Fq,
where the operator ⊕ denotes the q-ary addition. Formally,
an (n, nR1, nR2) computation code for the multiple access
channel consists of two encoders that map xn

j (mj), j = 1, 2,
and a decoder that maps ŵn

a (yn). The collection of codewords
Cn := {(xn

1 (m1), xn
2 (m2)) : (m1, m2) ∈ F

(nR1)×(nR2)
q } is

referred to as the codebook associated with the (n, nR1, nR2)
code.

Remark 1: For simplicity of presentation, we consider the
case X1 = X2 = Fq, but our arguments can be extended
to arbitrary X1 and X2 through the channel transformation
technique by Gallager [29, Sec. 6.2]. More specifically, given
a pair of symbol-by-symbol mappings ϕj : Fq → Xj ,
j = 1, 2, consider the virtual channel with finite field inputs,
p(y|v1, v2) = pY |X1,X2(y|ϕ1(v1), ϕ2(v2)), for which a com-
putation code is to be defined. The goal of the communication
is to convey Wa := a1 V n

1 ⊕ a2 V n
2 , where V n

j = vn
j (Mj) ∈

F
n
q is the virtual codeword mapped to message Mj at sender

j = 1, 2. Our results can be readily applied to this computation
problem defined on the virtual channel.

The performance of a given computation code with a fixed
desired vector a and with codebook Cn is measured by the
average probability of error

P (n)
e (Cn) = P(Ŵn

a 	= Wn
a |Cn),

when M1 and M2 are independent and uniformly distributed.
Message Mj , j = 1, 2, is said to be confusable if xn

j (Mj) =
xn

j (mj) for some mj 	= Mj ∈ F
nRj
q . A rate pair (R1, R2)

is said to be achievable for a-computation if there exists a
sequence of (n, nR1, nR2) computation codes such that

lim
n→∞

P (n)
e (Cn) = 0

and
lim

n→∞
P(Mj is confusable|Cn) = 0, (2)

for every j ∈ {1, 2} with aj 	= 0. Note that without the
condition in (2), the problem is trivial and an arbitrarily large
rate pair is achievable.

We now define the random ensemble of computation codes
referred to as homologous codes. Let p = p(x1)p(x2) be a
given input pmf on Fq × Fq , and let ε > 0. Suppose that the
codewords xn

1 (m1), m1 ∈ F
nR1
q , and xn

2 (m2), m2 ∈ F
nR2
q

that constitute the codebook are generated according to the
following steps:

1) Let R̂j = D(pXj‖Unif(Fq)) + ε, j = 1, 2, where D(·‖·)
is the Kullback–Leibler divergence.

2) Randomly generate a κ× n generator matrix, G, where
κ = max{nR1 + nR̂1, nR2 + nR̂2}, and two dither
vectors Dn

1 and Dn
2 such that the elements of G, Dn

1 ,
and Dn

2 are i.i.d. Unif(Fq) random variables.
3) Given the realizations G, dn

1 , and dn
2 of the generator

matrix and dithers, let

un
j (mj , lj) = [mj lj 0κ−n(Rj+R̂j)

] G + dn
j ,

for every mj ∈ F
nRj
q and every lj ∈ F

nR̂j
q , j = 1, 2.

At sender j = 1, 2, assign a codeword xn
j (mj) =

un
j (mj , Lj(mj)) to each message mj ∈ F

nRj
q where

Lj(mj) is a random variable that is drawn uniformly
at random among all lj vectors satisfying un

j (mj , lj) ∈
T (n)

ε (Xj) if there exists one, or among F
nR̂j
q otherwise.

The intuition behind this construction can be identified as
follows. In step 3), sender j = 1, 2 constructs a coset code
of rate Rj + R̂j , which is larger than its target rate Rj .
The redundancy, the amount of which is determined by R̂j ,
provides the existence of a codeword within the typical set
T (n)

ε (Xj) with high probability. The fact that the codewords
of different senders are built from the same underlying linear
code benefits computation in the sense that a linear combi-
nation of codewords is a codeword from a coset of the same
underlying linear code.

With a slight abuse of terminology, we refer to the random
tuple Cn := (G, Dn

1 , Dn
2 , (L1(m1) : m1 ∈ F

nR1
q ), (L2(m2) :

m2 ∈ F
nR2
q )) as the random homologous codebook1. Each

realization of the random homologous codebook Cn results
in one instance {(xn

1 (m1), xn
2 (m2)) : (m1, m2) ∈ F

nR1
q ×

F
nR2
q } of such generated codebooks, which constitutes an

(n, nR1, nR2) computation code along with the optimal
decoder. The random code ensemble generated in this manner
is referred to as an (n, nR1, nR2; p, ε) random homologous
code ensemble, where p is the given input pmf and ε > 0 is the
parameter used in steps 1 and 3 in codebook generation. A rate
pair (R1, R2) is said to be achievable for a-computation by the
(p, ε)-distributed random homologous code ensemble if there
exits a sequence of (n, nR1, nR2; p, ε) random homologous
code ensembles such that

lim
n→∞

ECn [P (n)
e (Cn)] = 0 (3)

1The codebook that each sender is equipped with through steps 1)-3) is
referred to as the nested coset codebook in the literature [13], [22], [23].
In that sense, a homologous codebook can be seen as a family of nested
coset codebooks constructed with the same generator matrix G with individual
dithers Dn

j and codebook distributions p(xj), j = 1, 2.
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and

lim
n→∞

ECn [P(Mj is confusable|Cn)] = 0, (4)

for every j ∈ {1, 2} with aj 	= 0. Here the expectations
are with respect to the random homologous codebook Cn,
i.e., (G, Dn

1 , Dn
2 , (L1(m1) : m1 ∈ F

nR1
q ), (L2(m2) : m2 ∈

F
nR2
q )). Given (p, ε,a), let R∗(p, ε,a) be the set of all rate

pairs achievable for a-computation by the (p, ε)-distributed
random homologous code ensemble. Given the input pmf p
and the desired vector a 	= 0 ∈ F

2
q , the optimal rate region

R∗(p, a), when it exists, is defined as

R∗(p, a) := cl
[
lim
ε→0

R∗(p, ε,a)
]
.

Remark 2: Instead of (4), one may consider alternative
notions for the confusability of the transmitted message, such
as

lim
n→∞

H(Mj |Xn
j (Mj), Cn)
n

= 0, (5)

or

lim
n→∞

ECn [P(G is rank deficient|Cn)] = 0. (6)

It is easy to show that our results for the optimal rate region
R∗(p, a) under (4) still apply if we change the confusability
notion with (5) or (6).

III. THE MAIN RESULT

In this section, we present a single-letter characterization of
the optimal rate region when the target linear combination is
in the following class.

Definition 1: A linear combination Wa = a1 X1 ⊕ a2 X2

for some a = [a1 a2] ∈ F
2
q \ {0} is said to be natural if

H(Wa |Y ) = min
b �=0

H(Wb |Y ), (7)

where b = [b1 b2] and Wb = b1 X1 ⊕ b2 X2 are over Fq.
Intuitively, a natural combination Wa is the easiest to

recover at the receiver and thus, in some sense, is the best
linear combination that is matched to the channel structure.

We are now ready to present the optimal rate region for
computing natural linear combinations.

Theorem 1: Given an input pmf p = p(x1)p(x2) and a
vector a 	= 0 ∈ F

2
q such that Wa is a natural combination,

the optimal rate region R∗(p, a) is the set of rate pairs
(R1, R2) such that

Rj ≤ I(Xj ; Y |Xjc), (8a)

Rj ≤ I(X1, X2; Y )−min{Rjc , I(Xjc ; Wa, Y )} (8b)

for every j ∈ {1, 2} with aj 	= 0, where jc = {1, 2} \ {j}.
The rate region in (8) in Theorem 1, which we will denote as

R∗∗(p, a), can be equivalently characterized in terms of well-
known rate regions for compute–forward and message com-
munication. Let RCF(p, a) be the set of rate pairs (R1, R2)
such that

Rj ≤ H(Xj)−H(Wa |Y ), ∀j ∈ {1, 2} with aj 	= 0. (9)

Let RMAC(p) be the set of rate pairs (R1, R2) such that

R1 ≤ I(X1; Y |X2),
R2 ≤ I(X2; Y |X1),

R1 + R2 ≤ I(X1, X2; Y ).

Proposition 1: For any input pmf p = p(x1)p(x2) and any
linear combination Wa,

R∗∗(p, a) = RCF(p, a) ∪RMAC(p).

The proof of Proposition 1 is relegated to Appendix A.
We prove Theorem 1 in three steps: 1) we first present a

general (not necessarily for natural combinations) inner bound
on the optimal rate region in Section IV, where we follow the
results in [22], [23] that studied the rate region achievable by
random homologous code ensembles using a suboptimal joint
typicality decoding rule, 2) we then show by Lemma 1 in
Section IV that this inner bound is equivalent to R∗∗(p, a) in
Proposition 1 if Wa is a natural combination, and 3) we present
a general (not necessarily for natural combinations) outer
bound on the optimal rate region in Section V by showing
that if a rate pair (R1, R2) is achievable for a-computation
by the (p, ε)-distributed random homologous code ensemble
for arbitrarily small ε, then (R1, R2) must lie in R∗∗(p, a) in
Theorem 1.

Remark 3: Due to the underlying linearity shared between
different users’ codebooks, the computation problem defined
in Section II is closely related to the message computation.
Indeed, one may redefine the computation problem over mes-
sages where the goal of transmission is to convey a linear
combination a1 M1 ⊕ a2 M2 of messages for R1 = R2

and redefine the achievability for a-computation by the (p, ε)-
distributed random homologous code ensemble and optimal
symmetric rate R∗(p, a) in a similar manner but based on
condition (3) only, then R∗(p, a) is equal to the largest
symmetric rate satisfying (8) in Theorem 1. The achievability
simply follows from the inner bound in Section IV. To see
this, note that a linear combination of codewords is of the
form

a1 Xn
1 (M1)⊕ a2 Xn

2 (M2)
=
(
a1[M1 L1 0κ−n(R1+R̂1)]⊕ a2[M2 L1 0κ−n(R2+R̂2)

]
)
G

⊕ a1D
n
1 ⊕ a2 Dn

2 .

Since the generator matrix G is full rank almost surely as
n→∞ by Lemma 6 under the rate constraints in Theorem 1,(
a1[M1 L1 0] ⊕ a2[M2 L1 0]

)
can be recovered from

a1 Xn
1 (M1)⊕a2 Xn

2 (M2) almost surely. When R1 = R2 = R,
the first nR bits of

(
a1[M1 L1 0] ⊕ a2[M2 L1 0]

)
would

give a1 M1 ⊕ a2 M2 as desired. To prove the optimality,
an outer bound can be obtained by following similar steps
with Section V.

IV. AN INNER BOUND

The linear computation performance of random homologous
code ensembles was studied using a suboptimal joint typicality
decoder in [22], [23]. For completeness, we first describe the
joint typicality decoding rule and then characterize the rate
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region achievable for a-computation by the (p, ε)-distributed
random homologous code ensemble under this joint typicality
decoding rule. We then concentrate on an arbitrarily small ε to
provide an inner bound on the optimal rate region R∗(p, a).
We will omit the steps that were already established in [22],
[23] and instead provide detailed references.

Upon receiving yn, the ε′-joint typicality decoder, ε′ > 0,
looks for a unique vector s ∈ F

κ
q such that

s = a1[m1 l1 0κ−n(R1+R̂1)
]⊕ a2[m2 l2 0κ−n(R2+R̂2)],

for some (m1, l1, m2, l2) ∈ F
nR1
q ×F

nR̂1
q ×F

nR2
q ×F

nR̂2
q that

satisfies

(un
1 (m1, l1), un

2 (m2, l2), yn) ∈ T (n)
ε′ (X1, X2, Y ),

where un
i (mi, li) = [mi li 0κ−n(Ri+R̂i)

]G ⊕ dn
i is the

auxiliary codeword defined in step 3) of the code construction
in Section II. If the decoder finds such s, then it declares
ŵn

a = sG⊕a1 dn
1⊕a2 dn

2 as an estimate; otherwise, it declares
an error.

To describe the performance of the joint typicality decoder,
we define RCF(p, δ, a) for a given input pmf p, δ ≥ 0, and
nonzero vector a ∈ F

2
q as the set of rate pairs (R1, R2) such

that

Rj ≤ H(Xj)−H(Wa |Y )− δ, ∀j ∈ {1, 2} with aj 	= 0.

Similarly, we define R1(p, δ) as the set of rate pairs (R1, R2)
such that

R1 ≤ I(X1; Y |X2)− δ, (10a)

R2 ≤ I(X2; Y |X1)− δ, (10b)

R1 + R2 ≤ I(X1, X2; Y )− δ, (10c)

R1 ≤ I(X1, X2; Y )−H(X2)
+ min

b1,b2∈F∗
q

H(Wb |Y )− δ, (10d)

and R2(p, δ) as the set of rate pairs (R1, R2) such that

R1 ≤ I(X1; Y |X2)− δ, (11a)

R2 ≤ I(X2; Y |X1)− δ, (11b)

R1 + R2 ≤ I(X1, X2; Y )− δ, (11c)

R2 ≤ I(X1, X2; Y )−H(X1)
+ min

b1,b2∈F∗
q

H(Wb |Y )− δ, (11d)

where b = [b1 b2] and Wb = b1 X1⊕b2 X2 are over Fq. Note
that the region RCF(p, a) = RCF(p, δ = 0,a), as defined
in (9) in Section III. Similarly, let Rj(p) denote the region
Rj(p, δ = 0) for j = 1, 2 in (10) and (11).

We are now ready to state the rate region achievable by the
random homologous code ensembles that combines the inner
bounds in [22, Theorem 1] and [23, Corollary 1].

Theorem 2: Let p = p(x1)p(x2) be an input pmf, δ > 0,
and a ∈ F

2
q be a nonzero vector. Then, there exists ε′ < δ

such that for every ε < ε′ sufficiently small, a rate pair

(R1, R2) ∈ RCF (p, δ, a) ∪R1(p, δ) ∪R2(p, δ) (12)

is achievable for a-computation by the (p, ε)-distributed ran-
dom homologous code ensemble along with the ε′-joint typi-
cality decoder. In particular,

[RCF (p, a) ∪R1(p) ∪R2(p)] ⊆ R∗(p, a). (13)

Proof: The proof of [22, Theorem 1] analyzes the average
probability of error for a-computation by the (p, ε)-distributed
random homologous code ensemble paired with the ε′-joint
typicality decoder for ε′ > ε > 0. Two upper bounds on the
average probability of error were given. The first one, direct
decoding bound, captures the error event that incorrect linear
combinations are confused with the correct one and shows that
for sufficiently small ε < ε′ < δ, the average probability of
error tends to zero as n→∞ if

(R1, R2) ∈ RCF (p, δ, a). (14)

The second one, multiple access bound, captures the error
event that incorrect message pairs (codeword pairs) are con-
fused with the correct one. This bound was later improved in
the proof of [23, Corollary 1]. The improved version shows
that for every a ∈ F

2
q , the average probability of error for

a-computation tends to zero as n→∞ if

(R1, R2) ∈ R1(p, δ) ∪R2(p, δ). (15)

Combining (14) and (15) establishes (12).
We still need to show that the condition in (4) holds.

Suppose that aj 	= 0. For a given codebook Cn, let Gj denote
the submatrix that consists of the first (nRj +nR̂j) rows of G
within Cn and sj(G) be the indicator variable such that sj = 1
if Gj is full rank. Then,

ECn [P(Mj is confusable|Cn)]

=
∑
Cn

P(Cn = Cn) P(Mj is confusable|Cn = Cn)

=
∑
Cn:

sj(G)=0

P(Cn = Cn) P(Mj is confusable|Cn = Cn)

≤
∑
Cn:

sj(G)=0

P(Cn = Cn)

= P(Sj(G) = 0).

Now, by Lemma 6 in Appendix B (with R ← Rj + R̂j),
the term P(Sj(G) = 0) tends to zero as n→∞ if Rj + R̂j <
1. By definition, R̂j = D(pXj‖Unif(Fq)) + ε, which reduces
the constraint to the form of Rj < H(Xj) − ε. Since this
condition is satisfied if (12) holds, the proof of (12) follows.

The proof of (13) follows by taking the closure of the
union of (12) over all δ > 0, which completes the proof of
Theorem 1.

The inner bound (13) in Theorem 1 is valid for computing
an arbitrary linear combination, which may not be equal
to the rate region R∗∗(p, a) in Theorem 1 for every a ∈
F

2
q , in general. For computing a natural linear combination,

however, the following lemma shows that the equivalent rate
region in Proposition 1 is achievable.

Lemma 1: If the desired linear combination Wa = a1 X1⊕
a2 X2 for (a1, a2) 	= (0, 0) is natural, then

[RCF(p, a) ∪R1(p) ∪R2(p)] = [RCF(p, a) ∪RMAC(p)].

The proof of Lemma 1 is relegated to Appendix C.
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V. AN OUTER BOUND

We start with presenting an outer bound on the rate region
R∗(p, ε,a) for a fixed input pmf p, ε > 0, and nonzero vector
a ∈ F

2
q . We then discuss the limit of this outer bound as ε→ 0

to establish an outer bound on the rate region R∗(p, a). Given
an input pmf p, δ > 0, and nonzero vector a ∈ F

2
q , we define

the rate region R∗∗(p, δ, a) as the set of rate pairs (R1, R2)
such that

Rj ≤ I(Xj ; Y |Xjc) + δ, (16a)

Rj ≤ I(X1, X2; Y )−min{Rjc , I(Xjc ; Wa, Y )}+ δ, (16b)

for every j ∈ {1, 2} with aj 	= 0, where jc = {1, 2} \ {j}.
Note that R∗∗(p, δ = 0,a) is equal to R∗∗(p, a) as defined
in (8).

We are now ready to state an outer bound on the optimal rate
region for computing an arbitrary linear combination, which is
also an outer bound on R∗(p, a) in Theorem 1 for computing
a natural combination.

Theorem 3: Let p = p(x1)p(x2) be an input pmf, ε > 0,
and a ∈ F

2
q be a nonzero vector. If a rate pair (R1, R2) is

achievable for a-computation by the (p, ε)-distributed random
homologous code ensemble, then there exists a continuous
δ′(ε) that tends to zero monotonically as ε→ 0 such that

(R1, R2) ∈ R∗∗(p, δ′(ε),a). (17)

In particular,

R∗(p, a) ⊆ R∗∗(p, a). (18)

Proof: We first start with an averaged version of Fano’s
inequality for a random homologous code ensemble Cn (recall
the notation in Section II).

Lemma 2: If

lim
n→∞

ECn [P (n)
e (Cn)] = 0

and

lim
n→∞

ECn [P(Mj is confusable|Cn)] = 0 (19)

for every j ∈ {1, 2} with aj 	= 0, then for every j ∈ {1, 2}
with aj 	= 0

H(Mj |Y n, Mjc , Cn) ≤ nεn

for some εn → 0 as n→∞.
The proof of Lemma 2 is relegated to Appendix D.

We next define the indicator random variable

En = �{(Xn
1 (M1),Xn

2 (M2))∈T (n)
ε′ (X1,X2)} (20)

for ε′ > 0. Since R̂i = D(pXi‖Unif(Fq)) + ε, i = 1, 2,
by the Markov lemma [22, Lemma 12] for homologous codes,
P(En = 0) tends to zero as n→∞ if ε′ is sufficiently large
compared to ε. Let ε′ = δ1(ε), which still tends to zero as

ε→ 0. Suppose that aj 	= 0. Then, for n sufficiently large,

nRj = H(Mj |Mjc , Cn)
(a)

≤ I(Mj ; Y n |Mjc , Cn) + nεn

≤ I(Mj , En; Y n |Mjc , Cn) + nεn

(b)

≤ logq 2 + I(Mj; Y n |Mjc , Cn, En) + nεn

≤ logq 2 + I(Mj ; Y n |Mjc , Cn, En = 0) P(En = 0)
+ I(Mj ; Y n |Mjc , Cn, E = 1) P(En = 1) + nεn

≤ logq 2 + nRj P(En = 0)

+ I(Mj; Y n |Mjc , Cn, En = 1) + nεn

= logq 2 + nRj P(En = 0) + nεn

+
n∑

i=1

I(Mj ; Yi |Y i−1, Mjc , Cn, Xjci, En = 1)

≤ logq 2 + nRj P(En = 0) + nεn

+
n∑

i=1

I(Mj , Xji, Y
i−1, Mjc , Cn; Yi |Xjci, En = 1)

(c)
= logq 2 + nRj P(En = 0) + nεn

+
n∑

i=1

I(Xji; Yi |Xjci, En = 1), (21)

where (a) follows by Lemma 2, (b) follows since En is a
binary random variable, and (c) follows since

(M1, M2, Y
i−1, Cn, En)→ (X1i, X2i)→ Yi

form a Markov chain for every i ∈ [n]. To further upper bound
(21), we make a connection between the distribution of the
random homologous codebook and the input pmf p as follows.

Lemma 3: Let (X1, X2, Y ) ∼ p(x1)p(x2)p(y|x1, x2) on
Fq × Fq × Y and ε, ε′ > 0. Let (Xn

1 (m1), Xn
2 (m2)) be the

random codeword pair assigned to message pair (m1, m2) ∈
F

nR1
q × F

nR2
q by an (n, nR1, nR2; p, ε) random homologous

code ensemble, where p = p(x1)p(x2) is the input pmf.
Further let Y n be a random sequence distributed according
to

∏n
i=1 pY |X1,X2(yi|x1i, x2i). Then, for every (x1, x2, y) ∈

Fq × Fq × Y and for every i = 1, 2, . . . , n,

(1 − ε′)p(x1, x2, y)

≤ P(X1i =x1, X2i =x2, Yi =y |(Xn
1 , Xn

2 )∈T (n)
ε′ (X1, X2))

≤ (1 + ε′)p(x1, x2, y).

The proof of Lemma 3 is relegated to Appendix E.
Back to the proof of Theorem 3, we are now ready to

establish (16a). By Lemma 3, each term I(Xji; Yi|Xjci, En =
1) is close to I(Xj ; Y |Xjc) upto a function of ε′ that vanishes
as ε′ → 0. Therefore, combining (21) with Lemma 3, we have

nRj ≤ logq 2 + nRj P(En = 0) + nεn

+ n(I(Xj ; Y |Xjc) + δ2(ε′))
(d)

≤ n(I(Xj ; Y |Xjc) + δ2(ε′)) + 2nεn

(e)

≤ n(I(Xj ; Y |Xjc) + δ3(ε)) + 2nεn, (22)
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where (d) follows since P(En = 0) tends to zero as n→∞
and (e) follows since ε′ = δ1(ε).

For the proof of (16b), we start with

nRj = H(Mj |Mjc , Cn)
(a)

≤ I(Mj ; Y n |Mjc , Cn) + nεn

= I(M1, M2; Y n |Cn)− I(Mjc ; Y n |Cn) + nεn, (23)

where (a) follows by Lemma 2. Following arguments similar
to (22), the first term in (23) can be bounded as

I(M1, M2; Y n |Cn)
≤ logq 2 + n(R1 + R2) P(En = 0)

+
n∑

i=1

I(M1, M2; Yi |Cn, Y i−1, En = 1)

≤ nεn +
n∑

i=1

I(M1, M2, Cn, Y i−1; Yi |En = 1)

= nεn +
n∑

i=1

I(M1, M2, Cn, Y i−1, X1i, X2i; Yi |En = 1)

= nεn +
n∑

i=1

I(X1i, X2i; Yi |En = 1)

≤ nεn + n(I(X1, X2; Y ) + δ4(ε)). (24)

To bound the second term in (23), we need the following
lemma, which is proved in Appendix F.

Lemma 4: For every ε′′ > ε′ and for n sufficiently large,

I(Mjc ;Y n |Cn)
≥ n[min{Rjc , I(Xjc ; Wa, Y )} − δ5(ε′′)]− nεn.

Combining (23), (24), and Lemma 4 with ε′′ = 2δ1(ε),
we have

nRj ≤ n(I(X1, X2; Y ) + δ4(ε))
− n[min{Rjc , I(Xjc ; Wa, Y )} − δ6(ε)] + 2nεn (25)

for n sufficiently large. Letting n → ∞ in (22) and (25)
establishes

Rj ≤ I(Xj ; Y |Xjc) + δ3(ε),
Rj ≤ I(X1, X2; Y )−min{Rjc , I(Xjc ; Wa, Y )}+ δ7(ε).

The proof of (17) follows by taking a continuous monotonic
function δ′(ε) ≥ max{δ3(ε), δ7(ε)} that tends to zero as ε→
0. Letting ε→ 0 in (17) establishes (18), which completes the
proof of Theorem 3.

The arguments used in the proof of (16a) starting from
Fano’s inequality can be generalized for a fixed (n, nR1, nR2)
computation code to provide a general outer bound on the
achievable rate pairs for a-computation. It seems, however,
difficult to generalize the arguments used in the proof of (16b).
In particular, it is unclear whether Lemma 4 can be generalized
to a fixed computation code. In Section VII, we present a
single-letter outer bound on the achievable rate pairs for a-
computation and compare that with the inner bound implied
by Theorem 2.

VI. OPTIMAL ACHIEVABLE RATES FOR BROADCAST

CHANNELS WITH MARTON CODING

In this section, we apply the techniques developed in the
previous sections to establish the optimal rate region for
broadcast channels by Marton coding. Consider the two-
receiver discrete memoryless broadcast channel (DM-BC)
(X , p(y1, y2|x),Y1×Y2) in Fig. 2, where the sender communi-
cates independent messages M1 and M2 to respective receivers
(see [15], [30], [31] for the formal definition of the communi-
cation problem over the broadcast channel). Throughout this
section, information measures are in log base 2 to follow a
similar notation with the existing literature.

Let p = p(u1, u2) be a given pmf on some finite set U1×U2,
and x = x(u1, u2) be a function from U1 × U2 to X , and let
ε > 0 and α ∈ [0 1]. The random ensemble of Marton codes
[15] is generated according to the following steps:

1) Let R̂1 = α(I(U1; U2) + 10εH(U1, U2)) and R̂2 =
α(I(U1; U2) + 10εH(U1, U2)), where α := (1 − α).2

2) For every m1 ∈ [2nR1 ], generate auxiliary codewords
un

1 (m1, l1), l1 ∈ [2nR̂1 ], each drawn i.i.d. from p(u1).
Similarly, for every m2 ∈ [2nR2 ], generate auxiliary
codewords un

2 (m2, l2), l2 ∈ [2nR̂2 ], each drawn i.i.d.
from p(u2).

3) At the sender, for every message pair, (m1, m2) ∈
[2nR1 ] × [2nR2 ], find an index pair (l1, l2) ∈ [2nR̂1 ] ×
[2nR̂2 ] such that

(un
1 (m1, l1), un

2 (m2, l2)) ∈ T (n)
ε (U1, U2),

and assign the codeword xn(m1, m2) as xi(m1, m2) =
x(u1i(m1, l1), u2i(m2, l2)), i ∈ [n]. If there are more
than one such pair of (l1, l2), choose one of them
uniformly at random; otherwise, choose one uniformly
at random from [2nR̂1 ]× [2nR̂2 ].

We refer to the random tuple

Cn :=
(
(Un

1 (m1, l1) : m1 ∈ [2nR1 ], l1 ∈ [2nR̂1 ]),

(Un
2 (m2, l2) : m2 ∈ [2nR2 ], l2 ∈ [2nR̂2 ]),

((L1, L2, x)(m1, m2) : m1 ∈ [2nR1 ], m2 ∈ [2nR2 ])
)

as the Marton random codebook. Each realization of the
Marton random codebook Cn results in one instance

{xn(m1, m2) : (m1, m2) ∈ [2nR1 ]× [2nR2 ]}

of such generated codebooks, which constitutes an
(n, nR1, nR2) code for the DM-BC along with the optimal
decoder. The random code ensemble generated in this manner
is referred to as an (n, nR1, nR2; p, x, α, ε) Marton random
code ensemble, where p = p(u1, u2) is the given pmf, x =
x(u1, u2) is the given function from U1 × U2 to X , α ∈ [0 1]
is the parameter used in step (1), and ε > 0 is the parameter
used in steps (1) and (3). A rate pair (R1, R2) is said to be
achievable by the (p, x, α, ε)-distributed Marton random code

2One can obtain the same results by following a similar analysis when
the rates R̂1 and R̂2 are chosen as α(I(U1; U2) + δ(ε)H(U1, U2)) and
ᾱ(I(U1; U2) + δ(ε)H(U1, U2)) respectively, for a sufficiently large δ(ε)
that tends to zero as ε → 0.
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Fig. 2. Two-receiver broadcast channel.

ensemble if there exits a sequence of (n, nR1, nR2; p, x, α, ε)
Marton random code ensembles such that

lim
n→∞

ECn [P (n)
e (Cn)] = 0,

where the expectation is with respect to the Marton random
codebook Cn. Given (p, x, α, ε), let R∗

BC(p, x, α, ε) be the
set of all rate pairs achievable by the (p, x, α, ε)-distributed
Marton random code ensemble. Given pmf p = p(u1, u2) and
function x = x(u1, u2), the optimal rate region R∗

BC(p, x),
when it exists, is defined as

R∗
BC(p, x) := cl

⎡
⎣ ⋃

α∈[0 1]

lim
ε→0

R∗
BC(p, x, α, ε)

⎤
⎦ .

We are now ready to state main result of this section.
Theorem 4: Given a pmf p(u1, u2) and a function x =

x(u1, u2), the optimal rate region R∗
BC(p, x) for the broadcast

channel p(y1, y2|x) is the closure of the set of rate pairs
(R1, R2) satisfying

R1 ≤ I(U1; Y1, U2)− αI(U1; U2), (26a)
R1 ≤ I(U1, U2; Y1)
−min{I(U1, U2; Y1), I(U2; Y1, U1)− αI(U1; U2), R2},

(26b)
R2 ≤ I(U2; Y2, U1)− αI(U1; U2), (26c)
R2 ≤ I(U1, U2; Y2)
−min{I(U1, U2; Y2), I(U1; Y2, U2)− αI(U1; U2), R1}

(26d)

for some α ∈ [0 1].
We prove Theorem 4 by showing that given a pmf p(u1, u2),

a function x(u1, u2), and α ∈ [0 1], the rate region
R∗

BC(p, x, α) := cl [limε→0 R∗
BC(p, x, α, ε)] is equal to the

rate region characterized by (26), which we will denote as
R∗∗

BC(p, x, α). We take a two-step approach similar to Sec-
tions IV and V, and establish the inner and the outer bounds
on the rate region R∗

BC(p, x, α), respectively.
The inner bound is relegated to Appendix G. For the outer

bound, given a fixed pmf p = p(u1, u2), a function x =
x(u1, u2) from U1×U2 to X , α ∈ [0 1], and δ > 0, we define
the rate region R∗∗

BC(p, x, α, δ) as the set of rate pairs (R1, R2)
such that

R1 ≤ I(U1; Y1, U2)− αI(U1; U2) + δ, (27a)

R1 ≤ I(U1, U2; Y1)

−min
{

I(U1, U2; Y1),
I(U2; Y1, U1)− αI(U1; U2), R2

}
+ δ, (27b)

R2 ≤ I(U2; Y2, U1)− αI(U1; U2) + δ, (27c)

R2 ≤ I(U1, U2; Y2)

−min
{

I(U1, U2; Y2),
I(U1; Y2, U2)− αI(U1; U2), R1

}
+ δ. (27d)

Note that the region R∗∗
BC(p, x, α, δ = 0) is equal to

R∗∗
BC(p, x, α) as defined in (26).
Proposition 2: Let p = p(u1, u2) be a pmf, x = x(u1, u2)

be a function, α ∈ [0 1], and ε > 0. If a rate pair (R1, R2) is
achievable by the (p, x, α, ε)-distributed Marton random code
ensemble, then there exists a continuous δ′(ε) that tends to
zero monotonically as ε→ 0 such that

(R1, R2) ∈ R∗∗
BC(p, x, α, δ′(ε)). (28)

In particular,

R∗
BC(p, x, α) ⊆ R∗∗

BC(p, x, α). (29)

Proof: We first start with an averaged version of
Fano’s inequality for a Marton random code ensemble
Cn. Consider a fixed codebook Cn = Cn. By Fano’s
inequality,

H(Mj |Y n
j , Cn = Cn) ≤ 1 + nRjP

(n)
e (Cn), j = 1, 2.

Taking the expectation over Marton random codebook Cn,
it follows that

H(Mj |Y n
j , Cn) ≤ 1 + nRj ECn [P (n)

e (Cn)] ≤ nεn, j = 1, 2,

(30)

for some εn → 0 as n→∞ since ECn [P (n)
e (Cn)]→ 0.

We next define the indicator random variable

Ẽn = �{(Un
1 (M1,L1),Un

2 (M2,L2))∈T (n)
ε (U1,U2)}. (31)

Since R̂1 + R̂2 = I(U1; U2) + 10εH(U1, U2), P(Ẽn = 0)
tends to zero as n→∞ by the mutual covering lemma in [28,
p. 208].

We are now ready to establish (27a). For n sufficiently large,
we have

nR1

= H(M1 |M2, Cn)
(a)

≤ I(M1; Y n
1 |M2, Cn) + nεn

≤ I(M1, Ẽn; Y n
1 |M2, Cn) + nεn

(b)

≤ 1 + I(M1; Y n
1 |M2, Cn, Ẽn) + nεn

≤ 1 + I(M1; Y n
1 |M2, Cn, Ẽn = 0) P(Ẽn = 0)

+ I(M1; Y n
1 |M2, Cn, Ẽn = 1) P(Ẽn = 1) + nεn

≤ 1 + nR1 P(Ẽn = 0) + I(M1; Y n
1 |M2, Cn, Ẽn = 1) + nεn

≤ 1 + nR1 P(Ẽn = 0)

+ I(M1, L2; Y n
1 |M2, Cn, Ẽn = 1) + nεn

≤ 1 + nR1 P(Ẽn = 0) + nR̂2

+ I(M1; Y n
1 |M2, L2, Cn, Ẽn = 1) + nεn
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= 1 + nR1 P(Ẽn = 0) + nR̂2 + nεn

+
n∑

i=1

I(M1; Y1i |Y i−1
1 , M2, L2, Cn, U2i, Ẽn = 1)

≤ 1 + nR1 P(Ẽn = 0) + nR̂2 + nεn

+
n∑

i=1

I(M1, U1i, Y
i−1
1 , M2, L2, Cn; Y1i |U2i, Ẽn = 1)

(c)
= 1 + nR1 P(Ẽn = 0) + nR̂2 + nεn

+
n∑

i=1

I(U1i; Y1i |U2i, Ẽn = 1)

(d)

≤ 1 + nR1 P(Ẽn = 0) + nR̂2 + nεn

+ n(I(U1; Y1 |U2) + δ1(ε)),

≤ 1 + nR1 P(Ẽn = 0) + nα(I(U1; U2) + δ2(ε)) + nεn

+ n(I(U1; Y1 |U2) + δ1(ε)),
(e)

≤ n(I(U1; Y1, U2)− αI(U1; U2) + δ3(ε)) + 2nεn, (32)

where (a) follows by (the averaged version of) Fano’s
inequality in (30), (b) follows since Ẽn is a binary ran-
dom variable, (c) follows since (M1, M2, Y

i−1
1 , Cn, Ẽn) →

(U1i, U2i) → Y1i form a Markov chain for every i ∈
[n], (d) follows by the memoryless property of the channel
and by Lemma 9 in Appendix E since the distribution of
(Un

1 (M1, L1), Un
2 (M2, L2)) is permutation invariant by con-

struction, and (e) follows since P(Ẽn = 0) tends to zero as
n→∞.

For the proof of (27b), we start with

nR1 = H(M1 |M2, Cn)
(a)

≤ I(M1; Y n
1 |M2, Cn) + nεn

= I(M1, M2; Y n
1 |Cn)− I(M2; Y n

1 |Cn) + nεn, (33)

where (a) follows by (the averaged version of) Fano’s inequal-
ity in (30). Following arguments similar to (32), the first term
in (33) can be bounded as

I(M1, M2; Y n
1 |Cn)

≤ 1 + n(R1 + R2) P(Ẽn = 0)

+
n∑

i=1

I(M1, M2; Y1i |Cn, Y i−1
1 , Ẽn = 1)

≤ nεn +
n∑

i=1

I(M1, M2, Cn, Y i−1
1 ; Y1i |Ẽn = 1)

= nεn +
n∑

i=1

I(M1, M2, Cn, Y i−1
1 , U1i, U2i; Y1i |Ẽn = 1)

= nεn +
n∑

i=1

I(U1i, U2i; Y1i |Ẽn = 1),

≤ nεn + n(I(U1, U2; Y1) + δ4(ε)). (34)

For the second term in (33), we need the following lemma,
which is proved in Appendix H. This lemma is a version of
Lemma 4 for Marton random code ensembles.

Lemma 5: For every ε′ > ε and for n sufficiently large,

I(M2; Y n
1 |Cn)

≥ n
[
min

{
R2, I(U1, U2; Y1),

I(U2; Y1, U1)− αI(U1; U2)

}
− δ5(ε′)

]
− nεn.

Combining (33), (34), and Lemma 5 with ε′ = 2ε, we have

nR1 ≤ nI(U1, U2; Y1) + nδ6(ε) + 2 nεn

− n min
{ R2, I(U1, U2; Y1),

I(U2; Y1, U1)− αI(U1; U2)

}
(35)

for n sufficiently large.
For (27c) and (27d), we establish similarly for decoder 2

nR2 ≤ n(I(U2; Y2, U1)− αI(U1; U2) + δ7(ε)) + 2nεn (36)

and

nR2 ≤ nI(U1, U2; Y2) + nδ8(ε) + 2 nεn

− n min
{

R1, I(U1, U2; Y2),
I(U1; Y2, U2)− αI(U1; U2)

}
(37)

for n sufficiently large. The proof of (28) follows by letting
n→∞ in (32), (35), (36), and (37), and taking a continuous
monotonic function δ′(ε) ≥ max{δ3(ε), δ6(ε), δ7(ε), δ8(ε)}
that tends to zero as ε→ 0. Letting ε→ 0 in (28) establishes
(29), which completes the proof of Proposition 2.

Remark 4: Marton coding we have analyzed involves two
codewords. Marton’s original coding scheme [15] uses rate
splitting and superposition coding, and involves an addi-
tional codeword that carries messages for both receivers (see
also [28, Proposition 8.1]). Our technique can be similarly
adapted to this general version of Marton coding.

VII. DISCUSSION

For the linear computation problem, the outer bound on
the optimal rate region presented in Section V is valid for
any computation, not only for natural computation. The inner
bound presented in Theorem 2, however, matches this outer
bound only for natural computation. It is an interesting
but difficult problem to characterize the optimal rate region
for arbitrary linear computation by a random homologous
code ensemble. At this point, it is unclear whether it is the
inner or outer bound that is loose (or both). The extension of
the results in this paper to more than two senders is also a
challenging question.

A more fundamental question is to characterize the capacity
region of the linear computation problem. The following
presents an outer bound on the rate pairs (R1, R2) that is
achievable for a-computation by any code. The proof is
deferred to Appendix I.

Proposition 3 (A general outer bound): Given a vector
a = [a1 a2] ∈ F

2
q with a1, a2 	= 0, if a rate pair (R1, R2) is
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achievable for a-computation, then it must satisfy

R1 ≤ min
{
I(X1; Y |X2, Q),

I(X1, X2; Y |Q)− I(X2; Wa, Y |T, Q)
}
, (38a)

R2 ≤ min
{
I(X2; Y |X1, Q),

I(X1, X2; Y |Q)− I(X1; Wa, Y |T, Q)
}
, (38b)

R1 + R2 ≤ I(X1, X2; Y |Q) + I(X1, X2; Wa, Y |T, Q)
− I(X1; Wa, Y |T, Q)− I(X2; Wa, Y |T, Q),

(38c)

for some p(q)p(x1|q)p(x2|q)p(t|x1, x2, q) such that (T, Q)→
(X1, X2)→Wa and (T, Q, Wa)→ (X1, X2)→ Y each form
a Markov chain, and

I(X1; Wa, Y |T, Q) + I(X2; Wa, Y |T, Q)
≤ I(X1, X2; Wa, Y |T, Q). (39)

Note that (39) is equivalent to

I(X1; X2 |T, Q) ≤ I(X1; X2 |Wa, Y, T, Q),

which is a variation of dependence-balance condition for two-
way channels [32].

We next take a closer look at achievability. First, note that by
Theorem 2, there exists a sequence of (fixed) (n, nR1, nR2)
computation codes that have vanishing error probability and
satisfy (2) if

(R1, R2) ∈ RCF(p, a) ∪R1(p) ∪R2(p)

for some input pmf p = p(x1)p(x2). We now convexify this
achievable rate region to get the following general inner bound
on the capacity region for a-computation.

Proposition 4 (A general inner bound): Given a vector
a = [a1 a2] ∈ F

2
q with a1, a2 	= 0, a rate pair (R1, R2) is

achievable for a-computation if

R1 ≤ min
{
I(X1; Y |X2, Q),

I(X1, X2; Y |Q)− I(X2; Wa, Y |T, Q)
}
, (40a)

R2 ≤ min
{
I(X2; Y |X1, Q),

I(X1, X2; Y |Q)− I(X1; Wa, Y |T, Q)
}
, (40b)

R1 + R2 ≤ I(X1, X2; Y |Q) + I(X1, X2; Wa, Y |T, Q)
− I(X1; Wa, Y |T, Q)− I(X2; Wa, Y |T, Q),

(40c)

for some p(q)p(x1|q)p(x2|q)p(t|x1, x2, q) such that

T |x1, x2, q ∼
{

(x1, x2) with probability β
∅ with probability 1− β

(41)

for some β ∈ [0, 1].
Remark 5: One can notice the structural similarity of the

rate regions in Propositions 3 and 4. Indeed, the rate region in
Proposition 4 is a special case of the one in Proposition 3
since every pmf p(q)p(x1|q)p(x2|q)p(t|x1, x2, q) such that
T |x1, x2, q is conditionally randomly drawn according to (41)

satisfies the Markov chains in Proposition 3 as well as the
condition in (39).

Proof: [Proof of Proposition 4] Taking the convex hull of
the rate region in Theorem 2, we know that the rate region

conv

⎛
⎝ ⋃

p=p(x1)p(x2)

[RCF(p, a) ∪R1(p) ∪R2(p)]

⎞
⎠

= conv

⎛
⎝ ⋃

p=p(x1)p(x2)

conv
[
RCF(p, a) ∪R1(p) ∪R2(p)

]⎞⎠
(a)
= conv

⎛
⎝ ⋃

p=p(x1)p(x2)

conv
[
RCF(p, a) ∪RMAC(p)

]⎞⎠
is achievable, where (a) follows since for every pmf p =
p(x1)p(x2), conv

(
R1(p) ∪ R2(p)

)
= RMAC(p). We now

prove that this achievable rate region is equivalent to the rate
region in Proposition 4. Consider a fixed Q = q and let
pq := p(x1|q)p(x2|q) and (X1q, X2q) ∼ pq . It suffices to
show that the rate region defined by (40) evaluated for Q = q
and pq is equivalent to

conv
[
RCF(pq, a) ∪RMAC(pq)

]
.

To see this, note that when T = (X1q, X2q), the rate region
defined by (40) reduces to RMAC(pq). Similarly, when T =
∅, the rate region defined by (40) reduces to RCF(pq,a).
In words, the random variable T for different β ∈ [0, 1]
values plays the role of time-sharing between the rate regions
RMAC(pq) and RCF(pq, a). Therefore, taking the union over
β ∈ [0, 1] results in conv

[
RCF(pq, a) ∪ RMAC(pq)

]
, which

completes the proof.

APPENDIX A
PROOF OF PROPOSITION 1

Fix a pmf p = p(x1)p(x2) and a nonzero vector a ∈ F
2
q .

We first show that [RCF (p, a) ∪ RMAC(p)] ⊆ R∗(p, a).
Suppose that the rate pair (R1, R2) ∈ RCF (p, a). Then, for
every j ∈ {1, 2} with aj 	= 0, the rate pair (R1, R2) satisfies

Rj ≤ H(Xj)−H(Wa |Y )
≤ H(Xj)−H(Wa |Y, Xjc)
= I(Xj ; Y |Xjc),

and

Rj ≤ H(Xj)−H(Wa |Y )
= I(X1, X2; Y )− I(Xjc ; Wa, Y )
≤ I(X1, X2; Y )−min{Rjc , I(Xjc ; Wa, Y )},

which implies that the rate pair (R1, R2) ∈ R∗(p, a). It fol-
lows that RCF (p, a) ⊆ R∗(p, a). Similarly, suppose that the
rate pair (R1, R2) ∈ RMAC(p). Then, for every j ∈ {1, 2}
with aj 	= 0, the rate pair (R1, R2) satisfies

Rj ≤ I(Xj ; Y |Xjc),

and

Rj ≤ I(X1, X2; Y )−Rjc

≤ I(X1, X2; Y )−min{Rjc , I(Xjc ; Wa, Y )},
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which implies that the rate pair (R1, R2) ∈ R∗(p, a). There-
fore, RMAC(p) ⊆ R∗(p, a).

Next, we show that R∗(p, a) ⊆ [RCF (p, a) ∪ RMAC(p)].
Suppose that the rate pair (R1, R2) ∈ R∗(p, a) such that
Rjc > I(Xjc ; Wa, Y ) for every j ∈ {1, 2} with aj 	= 0.
Then, (R1, R2) satisfies

Rj ≤ I(X1, X2; Y )− I(Xjc ; Wa, Y )
= H(Xj)−H(Wa |Y ),

for every j ∈ {1, 2} with aj 	= 0. Then, (R1, R2) ∈
RCF (p, a). It is easy to see that the rate pair (R1, R2) ∈
R∗(p, a) that satisfies Rjc ≤ I(Xjc ; Wa, Y ) for some
j ∈ {1, 2} with aj 	= 0, is included in RMAC(p). Thus,
R∗(p, a) ⊆ [RCF (p, a) ∪ RMAC(p)], which completes the
proof.

APPENDIX B

Lemma 6: Let G be an nR×n random matrix over Fq with
R < 1 where each element is drawn i.i.d. Unif(Fq). Then,

P(G is not full rank) ≤ q−n(1−R−εn),

for some εn → 0 as n→∞.
Proof: Probability of choosing nR linearly independent

rows can be written as

P(G is full rank) =

∏nR
j=1(q

n − qj−1)
(qn)nR

=
nR∏
j=1

(1 − qj−1−n)

≥ (1 − q−n(1−R))nR

(a)

≥ 1− nRq−n(1−R),

where (a) follows by Bernoulli’s inequality for n large enough
since R < 1. Using this relation, we have

P(G is not full rank) = 1− P(G is full rank)

≤ nRq−n(1−R).

Defining εn = logq(nR)

n completes the proof.

APPENDIX C
PROOF OF LEMMA 1

Fix a pmf p = p(x1)p(x2) and a nonzero vector a ∈
F

2
q . We will show that if the condition in (7) holds, then

RCF (p, a) ∪ R1(p) ∪ R2(p) = RCF (p, a) ∪ RMAC(p).
To start with, note that the rate regions R1(p) and R2(p)
have one additional rate constraint compared to RMAC(p).
Therefore, Rj(p) ⊆ RMAC(p) for j = 1, 2 and it follows that
RCF (p, a) ∪R1(p) ∪R2(p) ⊆ RCF (p, a) ∪RMAC(p) holds
in general. Then, it suffices to show that if the condition in
(7) holds, then RMAC(p) ⊆ [RCF (p, a) ∪ R1(p) ∪ R2(p)].
Suppose that the condition in (7) is satisfied. Let the rate pair
(R1, R2) ∈ RMAC(p) be such that Rjc > I(Xjc ; Wa, Y ) for
every j ∈ {1, 2} with aj 	= 0. Then, (R1, R2) satisfies

Rj ≤ I(X1, X2; Y )− I(Xjc ; Wa, Y )
= H(Xj)−H(Wa |Y ),

for every j ∈ {1, 2} with aj 	= 0, implying that (R1, R2) ∈
RCF (p, a). Now, let the rate pair (R1, R2) ∈ RMAC(p) be
such that Rjc ≤ I(Xjc ; Wa, Y ) for some j ∈ {1, 2} with
aj 	= 0. By condition (7), we have

I(Xjc ; Wa, Y ) = I(X1, X2; Y )−H(Xj) + H(Wa |Y )
= I(X1, X2; Y )−H(Xj) + min

b �=0
H(Wb |Y )

≤ I(X1, X2; Y )−H(Xj) + min
b1,b2
∈F∗q

H(Wb |Y ).

Then, the rate pair (R1, R2) ∈ R1(p) ∪ R2(p), which com-
pletes the proof.

APPENDIX D
PROOF OF LEMMA 2

Note that for j = 1, 2,

H(Mj |Y n, Mjc , Cn)
= I(Mj ; Wn

a |Y n, Mjc , Cn) + H(Mj |Wn
a , Y n, Mjc , Cn)

≤ H(Wn
a |Y n, Cn) + H(Mj |Wn

a , Y n, Mjc , Cn). (42)

To bound the first term in (42), we need a version of Fano’s
inequality for computation.

Lemma 7: If the average probability of error ECn [P (n)
e (Cn)]

tends to zero as n→∞, then

H(Wn
a |Y n, Cn) ≤ nεn

for some εn → 0 as n→∞.
Proof: For fixed codebook Cn = Cn, by Fano’s inequality

H(Wn
a |Y n, Cn = Cn) ≤ 1 + nP (n)

e (Cn).

Taking the expectation over the random homologous codebook
Cn, we have

H(Wn
a |Y n, Cn) ≤ 1 + nECn [P (n)

e (Cn)]
(a)

≤ nεn,

where (a) follows since ECn [P (n)
e (Cn)] tends to zero as n→

∞.
Suppose that aj 	= 0. Define indicator variable θj , j = 1, 2,

such that θj = 1 if Mj is confusable. Combining (42) with
Lemma 7, we have

H(Mj |Y n, Mjc , Cn)
≤ nεn + H(Mj |Wn

a , Y n, Mjc , Cn)
(a)
= nεn + H(Mj |Wn

a , Xn
jc(Mjc), Y n, Mjc , Cn)

(b)
= nεn + H(Mj |Wn

a , Xn
j (Mj), Xn

jc(Mjc), Y n, Mjc , Cn)
≤ nεn + H(Mj |Xn

j (Mj), Cn)

≤ nεn + H(Mj , θj |Xn
j (Mj), Cn)

(c)

≤ nεn + logq 2 + H(Mj |Xn
j (Mj), Cn, θj)

= nεn + logq 2 + H(Mj |Xn
j (Mj), Cn, θj = 1) P(θj = 1)

≤ nεn + logq 2 + nRj P(θj = 1)
(d)

≤ nεn + logq 2 + nRjεn

= n(εn +
logq 2

n
+ Rjεn),
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where (a) follows since Xn
jc(Mjc) is a function of (Mjc , Cn),

(b) follows since Xn
j (Mj) is a function of (Xn

jc (Mjc), Wn
a )

when aj 	= 0, (c) follows since θj is a binary random variable,
and (d) follows by the assumption in (19) in Lemma 2.

APPENDIX E
PROOF OF LEMMA 3

For the simplicity of the exposition without loss of gen-
erality, we provide a proof from a single-sender perspective
and the memoryless point-to-point channel pY |X(y|x) with
X = Fq . Let ε > 0 and p = p(x) be a pmf on Fq . Define an
(n, nR; pX , ε) random nested coset code ensemble following
steps 1)-3) for a single sender. Let Xn be the codeword sent
through the channel, ε′ > 0, i ∈ [n], and (x, y) ∈ Fq × Y .
Then,

P(Xi = x, Yi = y |Xn ∈ T (n)
ε′ (X))

= P(Xi = x|Xn ∈ T (n)
ε′ (X))

× P(Yi = y |Xi = x, Xn ∈ T (n)
ε′ (X))

= P(Xi = x|Xn ∈ T (n)
ε′ (X))pY |X(y |x). (43)

We make a connection between the conditional distribution of
Xi given {Xn ∈ T (n)

ε′ (X)} and the input pmf p(x). Therefore,
we start with exploring the conditional distribution of Xi given
{Xn ∈ T (n)

ε′ (X)}.
Lemma 8: Let p(x) be a pmf on Fq, and ε, ε′ > 0. Define
T (n)

ε′ (X, Θ) as the set of elements in T (n)
ε′ (X) with type

Θ. Suppose Xn(m) = Un(m, L(m)) denote the random
codeword assigned to message m by (n, nR; p(x), ε) random
nested coset code ensemble. Then,

Un(m, L)|{Un(m, L) ∈ T (n)
ε′ (X, Θ)} ∼ Unif(T (n)

ε′ (X, Θ)),

for every m ∈ F
nR
q .

Proof: Without loss of generality, we drop index m. It suf-
fices to show that the distribution of Un(L) is permutation
invariant. Let un, vn have the same type (typical or not) and
let vn = σ(un) for some permutation σ. Then, we have

P(Un(L) = un)

=
∑

l

∑
G

P(L = l, G = G, Dn = un � lG)

(a)
=

∑
l

∑
G

P(L = l, G = σ(G), Dn = vn � lσ(G))

= P(Un(L) = vn),

where σ(G) is the matrix constructed by applying permutation
σ to the columns of G and (a) follows since a permutation
applied to a coset code preserves the type of each codeword.

Building on top of Lemma 8, we next establish that the
conditional distribution of Xi given {Xn ∈ T (n)

ε′ (X)} is close
to the input pmf p(x).

Lemma 9: Let ε′ > 0. Define T (n)
ε′ (X, Θ) in a similar way

to Lemma 8. Suppose that the distribution of Xn is uniform
within T (n)

ε′ (X, Θ), namely,

Xn |{Xn ∈ T (n)
ε′ (X, Θ)} ∼ Unif(T (n)

ε′ (X, Θ)) (44)

for every type Θ such that T (n)
ε′ (X, Θ) 	= ∅. Then, conditioned

on the typical set, Xi’s have identical distribution that satisfies

(1− ε′)p(x) ≤ P (Xi = x|Xn ∈ T (n)
ε′ (X)) ≤ (1 + ε′)p(x),

for every x ∈ X .
Proof: Let x ∈ X . For a type Θ, let Θx denote the

empirical mode of x within type Θ. Then, for every type Θ
such that T (n)

ε′ (X, Θ) 	= ∅, we have

P(Xi = x|Xn ∈ T (n)
ε′ (X, Θ))

=
∑

xn∈T (n)
ε′

(X,Θ)
s.t. xi=x

P(Xn = xn |Xn ∈ T (n)
ε′ (X, Θ))

(a)
=

∑
xn∈T (n)

ε′ (X,Θ)
xi=x

1

|T (n)
ε′ (X, Θ)|

(b)
= Θx |T (n)

ε′ (X, Θ)| 1

|T (n)
ε′ (X, Θ)|

= Θx,

where (a) follows since Xn is conditionally uniform over
T (n)

ε′ (X, Θ), and (b) follows since T (n)
ε′ (X, Θ) is closed under

permutation. Combining this observation with the fact that Θ
is the type of a typical sequence, we get

(1− ε′)p(x) ≤ P(Xi = x|Xn ∈ T (n)
ε′ (X, Θ)) ≤ (1 + ε′)p(x),

for every x ∈ X . Since T (n)
ε′ (X) is the disjoint union of

T (n)
ε′ (X, Θ) over all types, multiplying each side with P(Xn ∈
T (n)

ε′ (X, Θ)) and then summing over Θ gives

(1− ε′)p(x) P(Xn ∈ T (n)
ε′ (X))

≤ P(Xi = x, Xn ∈ T (n)
ε′ (X))

≤ (1 + ε′)p(x) P(Xn ∈ T (n)
ε′ (X)),

for every x ∈ X . The claim follows from dividing each side
by P(Xn ∈ T (n)

ε′ (X)).
Back to the proof of Lemma 3, we have by Lemma 8 that the

distribution of Xn (codeword from an (n, nR; p(x), ε) random
nested coset code ensemble) satisfies the condition in (44) in
Lemma 9. Therefore, combining (43) with Lemma 9 completes
the proof.

APPENDIX F
PROOF OF LEMMA 4

Let ε′′ > ε′. Suppose that aj 	= 0, and jc = {1, 2} \ {j}.
First, by Lemma 7, we have

I(Mjc ; Y n |Cn) ≥ I(Mjc ; Wn
a , Y n |Cn)− nεn.

Therefore, it suffices to prove that for n sufficiently large,

I(Mjc ; Wn
a , Y n |Cn)

≥ n[min{Rjc , I(Xjc ; Wa, Y )} − δ5(ε′′)− εn].

Similar to [26], we will show that given Wn
a , Y n, and Cn,

a relatively short list L ⊆ F
nRjc

q can be constructed that
contains Mjc with high probability. Define a random set

L = {m ∈ F
nRjc

q : (Xn
jc(m), Wn

a , Y n) ∈ T (n)
ε′′ (Xjc , Wa, Y )}.
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Note that the set L is random with the underlying distribution
on (Wn

a , Y n, Cn), which is induced by drawing a random
homologous codebook Cn and using this codebook to encode
Xn

1 (M1) and Xn
2 (M2) that lead to Wn

a = a1 Xn
1 (M1) ⊕

a2 Xn
2 (M2) and Y n through the finite-field input memoryless

MAC p(y|x1, x2). We first bound the probability that an
incorrect message is in the random set L. Define two events
M1 = {M1 = M2 = 0} and M2 = {L1(M1) = L2(M2) =
0}. The indicator random variable En is as defined in (20).
By the symmetry of the codebook generation, for every m 	=
0 ∈ F

nRjc

q , we have

P(m⊕Mjc ∈ L, En = 1) = P(m ∈ L, En = 1|M1,M2).
(45)

The proof of this claim is given in (46)-(53), shown at the
bottom of the page, where (48) follows since (M1, M2) is
independent from (G, Dn

1 , Dn
2 ), (49) follows since (M1, M2)

is uniformly distributed and

(G, Dn
1 , Dn

2 ) d= (G, [m1 l1 0]G⊕Dn
1 , [m2 l2 0]G⊕Dn

2 )

result in two equivalent codebooks (i.e., the same set of code-
words with permuted mappings from messages to codewords),
and (53) follows by the fact proved in [22, Lemma 11] that
(M1, L1, M2, L2) is uniformly distributed over its support.

Continuing from (53), the probability in (45) is bounded
in (54)-(66), shown at the top of the next page, where step
(a) follows since ε′′ > ε′, (b) follows since conditioned on
M1 and M2, Un

jc → (Dn
1 , Dn

2 ) → Y n form a Markov
chain, (c) follows by [22, Lemma 11] since (G, Dn

1 , Dn
2 )

is independent from (M1, M2), and (d) follows by the con-
struction of the random homologous codebook Cn with R̂i =
D(pXi‖Unif(Fq)) + ε. Since P(En = 1) tends to one as
n → ∞, for n sufficiently large we have P(En = 1) ≥ q−ε.
Therefore, for n sufficiently large, the conditional probability
is bounded as

P(m⊕Mjc ∈ L|En = 1) =
P(m⊕Mjc ∈ L, En = 1)

P(En = 1)
≤ P(m⊕Mjc ∈ L, En = 1)qε

≤ q−n(I(Xjc ;Wa,Y )−δ5(ε′′))qε.

The expected size of L given {En = 1} is then bounded as

E(|L| |En = 1) ≤ 1 +
∑
m �=0

P(m⊕Mjc ∈ L|En = 1)

≤ 1 + qn(Rjc−I(Xjc ;Wa,Y )+δ5(ε′′)+ ε
n )

= 1 + qn(Rjc−I(Xjc ;Wa,Y )+δ5(ε′′)+εn), (67)

for n sufficiently large. Define another indicator random
variable Fn = �{Mjc∈L}. Since ε′′ > ε′ and P(En = 1)

P(m⊕Mjc ∈ L, En = 1)

= P((Xn
jc(m⊕Mjc), Wn

a , Y n) ∈ T (n)
ε′′ (Xjc , Wa, Y ), (Xn

1 (M1), X2(M2)) ∈ T (n)
ε′ (X1, X2)) (46)

=
∑

m1,l1
m2,l2

∑
G,

dn
1 ,dn

2

P
(

(M1, M2) = (m1, m2), (L1(M1), L2(M2)) = (l1, l2), G = G, Dn
1 = dn

1 , Dn
2 = dn

2 ,

(Xn
jc (m⊕mjc), Wn

a , Y n) ∈ T (n)
ε′′ (Xjc , Wa, Y ), (Xn

1 (m1), Xn
2 (m2)) ∈ T (n)

ε′ (X1, X2)

)
(47)

=
∑

m1,l1
m2,l2

∑
G,

dn
1 ,dn

2

P(M1 = m1, M2 = m2) P(G = G, Dn
1 = dn

1 , Dn
2 = dn

2 )

P

⎛
⎜⎝

L1(M1) = l1, L2(M2) = l2,

(Xn
jc (m⊕mjc), Wn

a , Y n) ∈ T (n)
ε′′ (Xjc , Wa, Y ),

(Xn
1 (m1), Xn

2 (m2)) ∈ T (n)
ε′ (X1, X2)

(M1, M2) = (m1, m2),
G = G, Dn

1 = dn
1 , Dn

2 = dn
2

⎞
⎟⎠ (48)

=
∑

m1,l1
m2,l2

∑
G,

dn
1 ,dn

2

P(M1 = 0, M2 = 0) P(G = G, Dn
1 = [m1 l1 0]G⊕ dn

1 , Dn
2 = [m2 l2 0]G⊕ dn

2 )

P

⎛
⎜⎝

L1(M1) = 0, L2(M2) = 0,

(Xn
jc(m), Wn

a , Y n) ∈ T (n)
ε′′ (Xjc , Wa, Y ),

(Xn
1 (0), Xn

2 (0)) ∈ T (n)
ε′ (X1, X2)

(M1, M2) = (0,0),
G = G, Dn

1 = [m1 l1 0]G⊕ dn
1 ,

Dn
2 = [m2 l2 0]G⊕ dn

2

⎞
⎟⎠ (49)

=
∑

m1,l1
m2,l2

∑
G,

dn
1 ,dn

2

P

⎛
⎝ (M1, M2) = (0,0), (L1(M1), L2(M2)) = (0,0),

G = G, Dn
1 = [m1 l1 0]G⊕ dn

1 , Dn
2 = [m2 l2 0]G⊕ dn

2 ,

(Xn
jc(m), Wn

a , Y n) ∈ T (n)
ε′′ (Xjc , Wa, Y ), (Xn

1 (0), Xn
2 (0)) ∈ T (n)

ε′ (X1, X2)

⎞
⎠ (50)

=
∑

m1,l1
m2,l2

P
(

(M1, M2) = (0,0), (L1(M1), L2(M2)) = (0,0),
(Xn

jc(m), Wn
a , Y n) ∈ T (n)

ε′′ (Xjc , Wa, Y ), (Xn
1 (0), Xn

2 (0)) ∈ T (n)
ε′ (X1, X2)

)
(51)

=
∑

m1,l1
m2,l2

P(M1,M2) P

(
(Xn

jc(m), Wn
a , Y n) ∈ T (n)

ε′′ (Xjc , Wa, Y ), M1

(Xn
1 (0), Xn

2 (0)) ∈ T (n)
ε′ (X1, X2) M2

)
(52)

= P((Xn
jc(m), Wn

a , Y n) ∈ T (n)
ε′′ (Xjc , Wa, Y ), (Xn

1 (0), Xn
2 (0)) ∈ T (n)

ε′ (X1, X2)|M1,M2), (53)
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P(m ∈ L, En = 1|M1,M2)

= P((Xn
jc (m), Wn

a , Y n) ∈ T (n)
ε′′ (Xjc , Wa, Y )(Xn

1 (0), X2(0)) ∈ T (n)
ε′ (X1, X2)|M1,M2) (54)

≤ P

(
(Un

jc(m, l), Wn
a , Y n) ∈ T (n)

ε′′ (Xjc , Wa, Y ) for some l ∈ F
nR̂jc

q , M1,

(Un
1 (0,0), U2(0,0)) ∈ T (n)

ε′ (X1, X2) M2

)
(55)

(a)

≤ P

(
(Un

jc(m, l), Wn
a , Y n) ∈ T (n)

ε′′ (Xjc , Wa, Y ) for some l ∈ F
nR̂jc

q , M1,

(Un
1 (0,0), U2(0,0)) ∈ T (n)

ε′′ (X1, X2) M2

)
(56)

≤
∑

l

P((Un
jc(m, l), Wn

a , Y n) ∈ T (n)
ε′′ (Xjc , Wa, Y ), (Un

1 (0,0), U2(0,0)) ∈ T (n)
ε′′ (X1, X2)|M1,M2) (57)

≤
∑

l

∑
(xn

1 ,xn
2 )∈

T (n)
ε′′

(X1,X2)

∑
(un,wn,yn)∈

T (n)
ε′′ (Xjc ,Wa,Y )

P
(

Un
jc(m, l) = un, Wn

a = wn, Y n = yn, M1,
Un

1 (0,0) = xn
1 , Un

2 (0,0) = xn
2 M2

)
(58)

=
∑

l

∑
(xn

1 ,xn
2 )∈

T (n)
ε′′ (X1,X2)

∑
(un,wn,yn)∈

T (n)
ε′′ (Xjc ,Wa,Y )

P
(

Un
jc(m, l) = un, a1D

n
1 ⊕ a2D

n
2 = wn, M1,

Y n = yn, Dn
1 = xn

1 , Dn
2 = xn

2 M2

)
(59)

(b)
=
∑

l

∑
(xn

1 ,xn
2 )∈

T (n)
ε′′ (X1,X2)

∑
(un,wn,yn)∈

T (n)
ε′′ (Xjc ,Wa,Y )

P
(

Un
jc(m, l) = un, a1D

n
1 ⊕ a2D

n
2 = wn, M1,

Dn
1 = xn

1 , Dn
2 = xn

2 M2

)
p(yn |xn

1 , xn
2 ) (60)

(c)

≤ qn(R̂1+R̂2)
∑

l

∑
(xn

1 ,xn
2 )∈

T (n)
ε′′ (X1,X2)

∑
(un,wn,yn)∈

T (n)
ε′′ (Xjc ,Wa,Y )

P
(

Un
jc(m, l) = un, a1D

n
1 ⊕ a2D

n
2 = wn,

Dn
1 = xn

1 , Dn
2 = xn

2

)
p(yn |xn

1 , xn
2 ) (61)

= qn(R̂1+R̂2)
∑

l

∑
(xn

1 ,xn
2 )∈

T (n)
ε′′ (X1,X2)

∑
(un,wn,yn)∈

T (n)
ε′′ (Xjc ,Wa,Y )

P
(

[m l]G⊕Dn
jc = un,

Dn
1 = xn

1 , Dn
2 = xn

2

)
p(yn |xn

1 , xn
2 )�{wn=a1 xn

1 ⊕a2 xn
2 } (62)

= qn(R̂1+R̂2)
∑

l

∑
(xn

1 ,xn
2 )∈

T (n)
ε′′ (X1,X2)

∑
(wn,yn)∈

T (n)
ε′′ (Wa,Y )

∑
un∈

T (n)
ε′′ (Xjc |wn,yn)

q−3n p(yn |xn
1 , xn

2 )�{wn=a1xn
1⊕a2xn

2 } (63)

≤ qn(R̂1+R̂2+R̂jc ) q−3n qn(H(Xjc |Wa,Y )+H(X1,X2)+δ(ε′′)) (64)
(d)

≤ q−n(I(Xjc ;Wa,Y )−δ(ε′′)−3ε) (65)

≤ q−n(I(Xjc ;Wa,Y )−δ5(ε′′)), (66)

tends to one as n → ∞, by the conditional typicality lemma
in [28, p. 27], P(Fn = 1) tends to one as n→ ∞. Then, for
n sufficiently large, we have

H(Mjc |Cn, Wn
a , Y n)

= H(Mjc |Cn, Wn
a , Y n, En, Fn)

+ I(Mjc ; En, Fn |Cn, Wn
a , Y n)

≤ H(Mjc |Cn, Wn
a , Y n, En, Fn) + 2 logq 2

≤ 2 logq 2 + P(Fn = 0)H(Mjc |Cn, Wn
a , Y n, Fn = 0, En)

+ H(Mjc |Cn, Wn
a , Y n, Fn = 1, En)

≤ 2 logq 2 + nRjc P(Fn = 0)

+ H(Mjc |Cn, Wn
a , Y n, Fn = 1, En). (68)

For the last term in (68), we use the fact that if Mjc ∈ L,
then the conditional entropy cannot exceed log(|L|):
H(Mjc |Cn, Wn

a , Y n, Fn = 1, En)
(a)
= H(Mjc |Cn, Wn

a , Y n, Fn = 1, En,L, |L|)

≤ H(Mjc |Fn = 1, En,L, |L|)

=
q

nRjc∑
l=0

P(|L| = l, En = 1)

×H(Mjc |En = 1, Fn = 1,L, |L| = l)

+
q

nRjc∑
l=0

P(|L| = l, En = 0)

×H(Mjc |En = 0, Fn = 1,L, |L| = l)

≤
q

nRjc∑
l=0

P(|L| = l, En = 1)

×H(Mjc |En = 1, Fn = 1,L, |L| = l)
+ P(En = 0)nRjc

≤
q

nRjc∑
l=0

P(|L| = l, En = 1) logq(l) + nRjc P(En = 0)
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≤
q

nRjc∑
l=0

P(|L| = l|En = 1) logq(l) + nRjc P(En = 0)

= E[logq(|L|)|En = 1] + nRjc P(En = 0)
(b)

≤ logq(E[|L| |En = 1]) + nRjc P(En = 0)
(c)

≤ logq 2 + max{0, n(Rjc − I(Xjc ; Wa, Y ) + δ5(ε′′) + εn)}
+ nRjc P(En = 0)

≤ logq 2 + max{0, n(Rjc − I(Xjc ; Wa, Y ))}
+ nδ5(ε′′) + nεn + nRjc P(En = 0),

where (a) follows since the set L and its cardinality |L| are
functions of (Cn, Wn

a , Y n), (b) follows by Jensen’s inequality,
and (c) follows by (67) and the soft-max interpretation of the
log-sum-exp function [33, p. 72]. Substituting back gives

I(Mjc ; Wn
a , Y n |Cn)

= H(Mjc |Cn)−H(Mjc |Cn, Wn
a , Y n)

= nRjc −H(Mjc |Cn, Wn
a , Y n)

≥ nRjc − 2 logq 2− nRjc P(Fn = 0)
−H(Mjc |Cn, Wn

a , Y n, Fn = 1, En)
≥ nRjc − 3 logq 2− nRjc(P(En = 0) + P(Fn = 0))

−max{0, n(Rjc − I(Xjc ; Wa, Y ))} − nδ5(ε′′)− nεn

= n[min{Rjc , I(Xjc ; Wa, Y )} − δ5(ε′′)− εn]
− 3− nRjc(P(E = 0) + P(F = 0))

(d)
= n[min{Rjc , I(Xjc ; Wa, Y )} − δ5(ε′′)− 2εn],

where (d) follows for large n since both probabilities P(En =
0) and P(Fn = 0) tend to zero as n→∞.

APPENDIX G
PROOF OF ACHIEVABILITY FOR THEOREM 4

Let parameters α ∈ [0, 1] and ε > 0. Given a pmf p(u1, u2)
and a function x(u1, u2), consider an (n, nR1, nR2; p, x, α, ε)
Marton random code ensemble. We use the nonunique simul-
taneous joint typicality decoding rule in [34] to establish the
achievability. Let ε′ > ε. Upon receiving the sequence yn

j ,
the ε′-joint typicality decoder j = 1, 2 looks for a unique
mj ∈ [2nRj ] such that

(un
1 (m1, l1), un

2 (m2, l2), yn
j ) ∈ T (n)

ε′ (U1, U2, Yj),

for some l1 ∈ [2nR̂1 ], l2 ∈ [2nR̂2 ], and mjc ∈ [2nRjc ], where
jc denotes {1, 2} \ j. If decoder j = 1, 2 finds such mj , then
it declares mj as an estimate; otherwise, it declares an error.

We analyze the probability of error. It suffices to consider
decoder 1, which declares an error only if one or more of the
following events occur

E0 = {(Un
1 (M1, l1), Un

2 (M2, l2)) /∈ T (n)
ε (U1, U2)

for every (l1, l2) ∈ [2nR̂1 ]× [2nR̂2 ]},
E1 = {(Un

1 (M1, L1), Un
2 (M2, L2), Y n

1 ) /∈ T (n)
ε′ (U1, U2, Y1)},

E2 = {(Un
1 (m1, l1), Un

2 (m2, l2), Y n
1 ) ∈ T (n)

ε′ (U1, U2, Y1)
for some m1 	= M1 ∈ [2nR1 ] and

for some (m2, l1, l2) ∈ [2nR2 ]× [2nR̂1 ]× [2nR̂2 ]}.

By the union of events bound, P(n)
e (Cn) ≤ P(E0) + P(E1 ∩

Ec
0)+P(E2∩Ec

0). Since R̂1+R̂2 = I(U1; U2)+10εH(U1, U2),
by the mutual covering lemma in [28, p. 208], the probability
P(E0) tends to zero as n→∞. By the conditional typicality
lemma in [28, p. 27], the probability P(E1 ∩Ec

0) tends to zero
as n→∞. The last term can be bounded by two ways. First,
by the symmetric codebook generation,

P(E2 ∩ Ec
0) ≤ P(E2)

= P(E2 |M1 = M2 = 1)

≤ P((Un
1 (m1, l1), Y n

1 ) ∈ T (n)
ε′ (U1, Y1)

for some m1 	= 1, for some l1 ∈ [2nR̂1 ]|M1 = 1),

which tends to zero as n→∞ if R1+R̂1 ≤ I(U1; Y1)−δ(ε′)
by the packing lemma in [28]. Letting R̂1 = α(I(U1; U2) +
10εH(U1, U2)), we have

R1 ≤ max{0, I(U1; Y1)− αI(U1; U2)− 2δ(ε′)}. (69)

Secondly, we can decompose the event E2 = E21∪E22 such
that

E21 = {(Un
1 (m1, l1), Un

2 (M2, l2), Y n
1 ) ∈ T (n)

ε′ (U1, U2, Y1)

for some m1 	= M1, for some (l1, l2) ∈ [2nR̂1 ]× [2nR̂2 ]},
E22 = {(Un

1 (m1, l1), Un
2 (m2, l2), Y n

1 ) ∈ T (n)
ε′ (U1, U2, Y1)

for some m1 	= M1, for some m2 	= M2,

for some (l1, l2) ∈ [2nR̂1 ]× [2nR̂2 ]}.

The probability P(E22) is bounded in (70)-(77), shown at the
top of the next page, where (74) follows since given {M1 =
M2 = 1}, the pair (Un

1 (m1, l1), Un
2 (m2, l2)) for m1 	=

1, m2 	= 1 is i.i.d. with respect to the product pmf p(u1)p(u2)
and is independent from Y n

1 . Substituting R̂1 + R̂2 =
I(U1; U2) + 10εH(U1, U2) into (77), it follows that P(E22)
tends to zero as n→∞ if R1 +R2 ≤ I(U1, U2; Y1)− 3δ(ε′).

We next bound the probability P(E21∩Ec
0). Define the events

M1 := {M1 = M2 = 1} andM2 := {L1 = L2 = 1}. By the
symmetry of the codebook generation,

P(E21 ∩ Ec
0) = P(E21 ∩ Ec

0 |M1,M2). (78)

To see this, define the tuple of auxiliary codewords for
sender j = 1, 2 as C̃n(j) := (Un

j (mj , lj) : mj ∈ [2nRj ], lj ∈
[2nR̂j ]). We first show that (M1, M2, L1, L2) is uniformly
distributed over its support. It suffices to show that for every
(m1, m2, l1, l2) ∈ [2nR1 ]× [2nR2 ]× [2nR̂1 ]× [2nR̂2 ],

P(M1 = m1,M2 = m2, L1 = l1, L2 = l2)
= P(M1 = 1, M2 = 1, L1 = 1, L2 = 1).

Fix a tuple (m1, m2, l1, l2) ∈ [2nR1 ]×[2nR2 ]×[2nR̂1 ]×[2nR̂2 ].
Given C̃n(j) = Cj , let σj(Cj) denote the permuted version of
Cj such that

{un
j (mj , l

′
j) ∈ Cj : l′j ∈ [2nR̂j ]}

= {ũn
j (1, l′j) ∈ σj(Cj) : l′j ∈ [2nR̂j ]}

and un
j (mj , lj) ∈ Cj and ũn

j (1, 1) ∈ σj(Cj) satisfy

un
j (mj , lj) = ũn

j (1, 1).
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P(E22) = P(E22 |M1 = M2 = 1) (70)

= P((Un
1 (m1, l1), Un

2 (m2, l2), Y n
1 ) ∈ T (n)

ε′ (U1, U2, Y1) for some m1 	= 1, for some m2 	= 1,

for some (l1, l2) ∈ [2nR̂1 ]× [2nR̂2 ]|M1 = M2 = 1) (71)

≤
∑

m1 �=1

∑
l1

∑
m2 �=1

∑
l2

P((Un
1 (m1, l1), Un

2 (m2, l2), Y n
1 ) ∈ T (n)

ε′ (U1, U2, Y1)|M1 = M2 = 1) (72)

≤
∑

m1 �=1

∑
l1

∑
m2 �=1

∑
l2

∑
(un

1 ,un
2 ,yn

1 )∈

T (n)
ε′ (U1,U2,Y1)

P(Un
1 (m1, l1) = un

1 , Un
2 (m2, l2) = un

2 , Y n
1 = yn

1 |M1 = M2 = 1) (73)

=
∑

m1 �=1

∑
l1

∑
m2 �=1

∑
l2

∑
(un

1 ,un
2 ,yn

1 )∈

T (n)
ε′ (U1,U2,Y1)

p(yn
1 |M1 = M2 = 1)

n∏
i=1

pU1(u1i)pU2(u2i) (74)

≤
∑

m1 �=1

∑
l1

∑
m2 �=1

∑
l2

∑
(un

1 ,un
2 ,yn

1 )∈

T (n)
ε′ (U1,U2,Y1)

p(yn
1 |M1 = M2 = 1)2−n(H(U1)+H(U2)−δ(ε′)) (75)

≤
∑

m1 �=1

∑
l1

∑
m2 �=1

∑
l2

2−n(H(U1)+H(U2)−H(U1,U2|Y1)−2δ(ε′)) (76)

≤ 2n(R1+R2+R̂1+R̂2)2−n(H(U1)+H(U2)−H(U1,U2|Y1)−2δ(ε′)), (77)

Then, we have

P(M1 = m1, M2 = m2, L1 = l1, L2 = l2)

=
∑
C1,C2

P
( M1 = m1, M2 = m2, L1 = l1, L2 = l2,

C̃n(1) = C1, C̃n(2) = C2

)
(a)
=

∑
C1,C2

P(M1 = m1, M2 = m2) P(C̃n(1) = C1)

P(C̃n(2) = C2) P
(

L1 = l1, M1 = m1, M2 = m2,

L2 = l2 C̃n(1) = C1, C̃n(2) = C2

)
(b)
=

∑
C1,C2

P(M1 = 1, M2 = 1) P(C̃n(1) = σ1(C1))

P(C̃n(2) = σ2(C2)) P

⎛
⎝ L1 = 1,

L2 = 1

∣∣∣∣∣∣
M1 = 1, M2 = 1,

C̃n(1) = σ1(C1),
C̃n(2) = σ2(C2)

⎞
⎠

=
∑
C1,C2

P
( M1 = 1, M2 = 1, L1 = 1, L2 = 1,

C̃n(1) = σ1(C1), C̃n(2) = σ2(C2)

)
= P(M1 = 1, M2 = 1, L1 = 1, L2 = 1),

where (a) follows since (M1, M2, C̃n(1), C̃n(2)) are indepen-
dent, (b) follows since (M1, M2) is uniformly distributed and

C̃n(j) d= σj(C̃n(j)), j = 1, 2.
Following similar arguments, we can now prove the claim in

(78), the proof of which is given in (79)-(86), shown at the top
of the next page, where (86) follows since (M1, M2, L1, L2)
is uniformly distributed.

To bound P(E21 ∩ Ec
0), we continue from (78) as follows.

P(E21 ∩ Ec
0 |M1,M2)

≤
∑

m1 �=1

∑
l1,l2

P

⎛
⎜⎜⎝

(Un
1 (m1, l1), Un

2 (1, l2), Y n
1 )

∈ T (n)
ε′ (U1, U2, Y ),

(Un
1 (1, 1), Un

2 (1, 1))
∈ T (n)

ε (U1, U2)

∣∣∣∣∣∣∣∣
M1,
M2

⎞
⎟⎟⎠

(a)

≤
∑

m1 �=1

∑
l1,l2

P

⎛
⎜⎜⎜⎝

(Un
1 (m1, l1), Un

2 (1, l2), Y n
1 )

∈ T (n)
ε′ (U1, U2, Y ),

(Un
1 (1, 1), Un

2 (1, 1))
∈ T (n)

ε′ (U1, U2)

∣∣∣∣∣∣∣∣∣
M1,
M2

⎞
⎟⎟⎟⎠

≤
∑

m1 �=1

∑
l1

P

⎛
⎜⎜⎜⎜⎝

(Un
1 (m1, l1), Un

2 (1, 1), Y n
1 )

∈ T (n)
ε′ (U1, U2, Y ),

(Un
1 (1, 1), Un

2 (1, 1))

∈ T (n)
ε′ (U1, U2)

∣∣∣∣∣∣∣∣∣∣
M1,
M2

⎞
⎟⎟⎟⎟⎠

+
∑

m1 �=1

∑
l1

∑
l2 �=1

P

⎛
⎜⎜⎜⎜⎝

(Un
1 (m1, l1), Un

2 (1, l2), Y n
1 )

∈ T (n)
ε′ (U1, U2, Y ),

(Un
1 (1, 1), Un

2 (1, 1))

∈ T (n)
ε′ (U1, U2)

∣∣∣∣∣∣∣∣∣∣
M1,
M2

⎞
⎟⎟⎟⎟⎠

(87)

where (a) follows since ε′ > ε. The first summation term in
(87) can be bounded as

∑
m1 �=1

∑
l1

P

⎛
⎜⎜⎜⎜⎝

(Un
1 (m1, l1), Un

2 (1, 1), Y n
1 )

∈ T (n)
ε′ (U1, U2, Y ),

(Un
1 (1, 1), Un

2 (1, 1))

∈ T (n)
ε′ (U1, U2)

∣∣∣∣∣∣∣∣∣∣
M1,

M2

⎞
⎟⎟⎟⎟⎠

≤
∑

m1 �=1

∑
l1

∑
(un

1 ,un
2 )

∈T (n)
ε′ (U1,U2)

∑
(ũn

1 ,yn
1 )

∈T (n)
ε′ (U1,Y1|un

2 )

P

⎛
⎜⎜⎜⎝

Un
1 (m1, l1) = ũn

1 ,

Un
1 (1, 1) = un

1 ,

Un
2 (1, 1) = un

2 ,
Y n

1 = yn
1

∣∣∣∣∣∣∣∣∣
M1,
M2

⎞
⎟⎟⎟⎠
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P(E21 ∩ Ec
0) = P((Un

1 (m′
1, l

′
1), U

n
2 (M2, l

′
2), Y

n
1 ) ∈ T (n)

ε′ (U1, U2, Y1) for some m′
1 	= M1,

for some (l′1, l
′
2) ∈ [2nR̂1 ]× [2nR̂2 ], (Un

1 (M1, L1), Un
2 (M2, L2)) ∈ T (n)

ε (U1, U2)) (79)

=
∑

m1,m2,
l1,l2

∑
C1,C2

P

⎛
⎜⎝ (Un

1 (m′
1, l

′
1), U

n
2 (M2, l

′
2), Y

n
1 ) ∈ T (n)

ε′ (U1, U2, Y1) for some m′
1 	= M1,

for some (l′1, l′2) ∈ [2nR̂1 ]× [2nR̂2 ], (Un
1 (M1, L1), Un

2 (M2, L2)) ∈ T (n)
ε (U1, U2),

(M1, M2, L1, L2) = (m1, m2, l1, l2), (C̃n(1), C̃n(2)) = (C1, C2)

⎞
⎟⎠ (80)

=
∑

m1,m2,
l1,l2

∑
C1,C2

P(M1 = m1, M2 = m2) P
(
(C̃n(1), C̃n(2)) = (C1, C2)

)

P

⎛
⎜⎜⎜⎝

(Un
1 (m′

1, l
′
1), U

n
2 (M2, l

′
2), Y

n
1 ) ∈ T (n)

ε′ (U1, U2, Y1) M1 = m1

for some m′
1 	= M1, for some (l′1, l

′
2) ∈ [2nR̂1 ]× [2nR̂2 ], M2 = m2

(Un
1 (M1, L1), Un

2 (M2, L2)) ∈ T (n)
ε (U1, U2), C̃n(1) = C1

(L1, L2) = (l1, l2)) C̃n(2) = C2

⎞
⎟⎟⎟⎠ (81)

=
∑

m1,m2,
l1,l2

∑
C1,C2

P(M1 = 1, M2 = 1) P
(
(C̃n(1), C̃n(2)) =

(
σ1(C1), σ2(C2)

))

P

⎛
⎜⎜⎜⎝

(Un
1 (m′

1, l
′
1), U

n
2 (M2, l

′
2), Y

n
1 ) ∈ T (n)

ε′ (U1, U2, Y1) M1 = 1
for some m′

1 	= M1, for some (l′1, l
′
2) ∈ [2nR̂1 ]× [2nR̂2 ], M2 = 1

(Un
1 (M1, L1), Un

2 (M2, L2)) ∈ T (n)
ε (U1, U2), C̃n(1) = σ1(C1)

(L1, L2) = (1, 1)) C̃n(2) = σ2(C2)

⎞
⎟⎟⎟⎠ (82)

=
∑

m1,m2,
l1,l2

∑
C1,C2

P

⎛
⎜⎝ (Un

1 (m′
1, l

′
1), U

n
2 (M2, l

′
2), Y

n
1 ) ∈ T (n)

ε′ (U1, U2, Y1) for some m′
1 	= M1,

for some (l′1, l
′
2) ∈ [2nR̂1 ]× [2nR̂2 ], (Un

1 (M1, L1), Un
2 (M2, L2)) ∈ T (n)

ε (U1, U2),
(M1, M2, L1, L2) = (1, 1, 1, 1), (C̃n(1), C̃n(2)) =

(
σ1(C1), σ2(C2)

)
⎞
⎟⎠ (83)

=
∑

m1,m2,
l1,l2

P
(
E21 ∩ Ec

0 , (M1, M2, L1, L2) = (1, 1, 1, 1)
)

(84)

=
∑

m1,m2,
l1,l2

P
(
(M1, M2, L1, L2) = (1, 1, 1, 1)

)
P
(
E21 ∩ Ec

0 |M1,M2

)
(85)

= P
(
E21 ∩ Ec

0 |M1,M2

)
(86)

(a)
=

∑
m1 �=1

∑
l1

∑
(un

1 ,un
2 )

∈T (n)
ε′ (U1,U2)∑

(ũn
1 ,yn

1 )

∈T (n)
ε′ (U1,Y1|un

2 )

P

(
Un

1 (m1, l1) = ũn
1 ,

Un
1 (1, 1) = un

1 ,
Un

2 (1, 1) = un
2

∣∣∣∣∣ M1,
M2

)
p(yn

1 |un
1 , un

2 )

(b)

≤ 2n(R̂1+R̂2)
∑

m1 �=1

∑
l1

∑
(un

1 ,un
2 )

∈T (n)
ε′ (U1,U2)

∑
(ũn

1 ,yn
1 )

∈T (n)
ε′

(U1,Y1|un
2 )

P

(
Un

1 (m1, l1) = ũn
1 ,

Un
1 (1, 1) = un

1 ,
Un

2 (1, 1) = un
2

)
p(yn

1 |un
1 , un

2 )

(c)

≤ 2n(R̂1+R̂2)
∑

m1 �=1

∑
l1

∑
(un

1 ,un
2 )

∈T (n)
ε′ (U1,U2)∑

(ũn
1 ,yn

1 )

∈T (n)
ε′ (U1,Y1|un

2 )

p(yn
1 |un

1 , un
2 )2−n(2H(U1)+H(U2)−δ(ε′))

≤ 2n(R̂1+R̂2)
∑

m1 �=1

∑
l1∑

(un
1 ,un

2 )

∈T (n)
ε′ (U1,U2)

2n(H(U1|Y1,U2)+δ(ε′))2−n(2H(U1)+H(U2)−δ(ε′))

≤ 2n(R̂1+R̂2)
∑

m1 �=1

∑
l1

2n(H(U1|Y1,U2)+δ(ε′))

× 2−n(2H(U1)+H(U2)−δ(ε′))2n(H(U1,U2)+δ(ε′))

≤2n(R1+2R̂1+R̂2+H(U1,U2)+H(U1|Y1,U2)−2H(U1)−H(U2)+3δ(ε′))

= 2n(R1+2R̂1+R̂2−I(U1;U2)−I(U1;Y1,U2)+3δ(ε′)),

where (a) follows since given (M1,M2) the tuple
Un

1 (m1, l1) → (Un
1 (1, 1), Un

2 (1, 1)) → Y n
1 form a Markov

chain, (b) follows by [22, Lemma 11] since the tuple
(Un

1 (m1, l1), Un
1 (1, 1), Un

2 (1, 1)) is independent of the event
M1 and (M1, M2, L1, L2) is uniformly distributed, and (c)
follows since the tuple (Un

1 (m1, l1), Un
1 (1, 1), Un

2 (1, 1)) is
i.i.d. with respect to the product pmf p(u1)p(u1)p(u2).

Similarly, the second summation term in (87) can be
bounded as

∑
m1 �=1

∑
l1

∑
l2 �=1

P

⎛
⎜⎜⎜⎝

(Un
1 (m1, l1), Un

2 (1, l2), Y n
1 )

∈ T (n)
ε′ (U1, U2, Y ),

(Un
1 (1, 1), Un

2 (1, 1))

∈ T (n)
ε′ (U1, U2)

∣∣∣∣∣∣∣∣∣
M1,

M2

⎞
⎟⎟⎟⎠

≤ 2n(R1+2R̂1+2R̂2−2I(U1;U2)−I(U1,U2;Y1)+3δ(ε′)).

Therefore, P(E21 ∩ Ec
0) tends to zero as n → ∞ if

R1 + 2R̂1 + R̂2 ≤ I(U1; U2) + I(U1; Y1, U2) − 3δ(ε′) and
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R1+2R̂1+2R̂2 ≤ 2I(U1; U2)+I(U1, U2; Y1)−3δ(ε′). Letting
R̂1 = α(I(U1; U2)+10εH(U1, U2)) and R̂2 = α(I(U1; U2)+
10εH(U1, U2)) results in R1 ≤ I(U1; Y1, U2)−αI(U1; U2)−
4δ(ε′) and R1 ≤ I(U1, U2; Y1)− 4δ(ε′).

Combining with (69), the probability of error at decoder
1 tends to zero as n→∞ if

R1 ≤ max{0, I(U1; Y1)− αI(U1; U2)− 4δ(ε′)}, (88)

or

R1 ≤ I(U1; Y1, U2)− αI(U1; U2)− 4δ(ε′), (89a)

R1 + R2 ≤ I(U1, U2; Y1)− 4δ(ε′). (89b)

Repeating similar steps, the probability of error at decoder
2 tends to zero as n→∞ if

R2 ≤ max{0, I(U2; Y2)− αI(U1; U2)− 4δ(ε′)}, (90)

or

R2 ≤ I(U2; Y2, U1)− αI(U1; U2)− 4δ(ε′), (91a)

R1 + R2 ≤ I(U1, U2; Y2)− 4δ(ε′). (91b)

If we denote the set of rate pairs satisfying (88) or (89)
as RBC,1(p, x, α, δ(ε′)), and denote the set of rate pairs
satisfying (90) or (91) as RBC,2(p, x, α, δ(ε′)), then the
rate region RBC,1(p, x, α, δ(ε′)) ∩ RBC,2(p, x, α, δ(ε′)) is
achievable by the ε′-typicality decoders. Define the rate
regions RBC,j(p, x, α) := RBC,j(p, x, α, δ(ε′) = 0), j =
1, 2. Let ε′ = 2ε. Taking ε → 0 and then taking the
closure implies

RBC,1(p, x, α) ∩RBC,2(p, x, α) ⊆ R∗
BC(p, x, α).

The achievability proof follows from the next lemma that
provides an equivalent characterization for the rate region in
Theorem 4.

Lemma 10: For any input pmf p = p(u1, u2), function x =
x(u1, u2), and α ∈ [0 1],

R∗∗
BC(p, x, α) = RBC,1(p, x, α) ∩RBC,2(p, x, α).

Proof: Fix pmf p = p(u1, u2), function x = x(u1, u2)
and α ∈ [0 1]. It suffices to show that the rate region
RBC,1(p, x, α) is equivalent to the set of rate pairs (R1, R2)
that satisfy (26a)-(26b). We first show that any rate pair in
RBC,1(p, x, α) satisfies (26a)-(26b). Suppose that the rate pair
(R1, R2) ∈ RBC,1(p, x, α), which implies that

R1 ≤ I(U1; Y1, U2)− αI(U1; U2),

and

R1 ≤ max{0, I(U1; Y1)− αI(U1; U2), I(U1, U2; Y1)−R2}
= I(U1, U2; Y1)
−min{I(U1, U2; Y1), I(U2; Y1, U1)− αI(U1; U2), R2}.

Therefore, (R1, R2) satisfies (26a)-(26b).
We now prove the other direction. Suppose that the

rate pair (R1, R2) satisfies (26a)-(26b). Assume also that

R2 < min{I(U2; Y1, U1)−αI(U1; U2), I(U1, U2; Y1)}. It then
follows that

R1 ≤ I(U1; Y1, U2)− αI(U1; U2),
R1 ≤ I(U1, U2; Y1)−R2.

So, the rate pair (R1, R2) ∈ RBC,1(p, x, α). If instead R2 ≥
min{I(U2; Y1, U1)− αI(U1; U2), I(U1, U2; Y1)}, then

R1 ≤ I(U1; Y1, U2)− αI(U1; U2),
R1 ≤ I(U1, U2; Y1)

−min{I(U2; Y1, U1)− αI(U1; U2), I(U1, U2; Y1)}
= max{0, I(U1; Y1)− αI(U1; U2)}.

Therefore, (R1, R2) ∈ RBC,1(p, x, α), which completes the
proof of the lemma.

APPENDIX H
PROOF OF LEMMA 5

Let ε′ > ε. First, by (the averaged version of) Fano’s lemma
in (30), we have

I(M2; Y n
1 |Cn) ≥ I(M2; M1, Y

n
1 |Cn)− nεn.

Therefore, it suffices to prove that for n sufficiently large,

I(M2; M1, Y
n
1 |Cn)

≥ n
[
min

{ R2, I(U1, U2; Y1),
I(U2; Y1, U1)− αI(U1; U2)

}
− δ(ε′)− 2εn

]
,

for some δ(ε′) that tends to zero as ε′ → 0.
Similar to [26], we will show that given M1, Y

n
1 and Cn,

a relatively short list L ⊆ [2nR2 ] can be constructed that
contains M2 with high probability. Define a random set

L = {m2 ∈ [2nR2 ] :

(Un
1 (M1, l1), Un

2 (m2, l2), Y n
1 ) ∈ T (n)

ε′ (U1, U2, Y1)

for some (l1, l2) ∈ [2nR̂1 ]× [2nR̂2 ]}.

Note that the set L is random with the underlying distribution
on (M1, Y

n
1 , Cn), which is induced by drawing a Marton

random codebook Cn and using this codebook to encode
Un

1 (M1, L1) and Un
2 (M2, L2) into Xn(M1, M2) that lead

to Y n
1 through the DM-BC p(y1, y2|x). We first bound the

probability that an incorrect message is in the random set L.
Define the events M1 = {M1 = M2 = 1} and M2 = {L1 =
L2 = 1}. The indicator random variable Ẽn is as defined in
(31). By the symmetry of the codebook generation discussed
in Appendix G, for every m2 	= M2 ∈ [2nR2 ]

P(m2 ∈ L, Ẽn = 1) = P(m2 ∈ L, Ẽn = 1|M1,M2), (92)

which is easy to see following similar steps to the proof
of (78). We will use the conditioned version to bound the
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probability term in (92). For every m2 	= 1 ∈ [2nR2 ],

P(m2 ∈ L, Ẽn = 1|M1,M2)

(a)
= P

( (Un
1 (1, l1), Un

2 (m2, l2), Y n
1 ) ∈ T (n)

ε′

for some (l1, l2) ∈ [2nR̂1 ]× [2nR̂2 ],
(Un

1 (1, 1), Un
2 (1, 1)) ∈ T (n)

ε

∣∣∣∣∣ M1,
M2

)

(b)

≤
∑
l2

∑
(un

1 ,un
2 )∈T (n)

ε (U1,U2)

∑
(ũn

2 ,yn
1 )∈T (n)

ε′ (U2,Y1|un
1 )

P

⎛
⎜⎜⎝

Un
1 (1, 1) = un

1 ,
Un

2 (1, 1) = un
2 ,

Un
2 (m2, l2) = ũn

2 ,
Y n

1 = yn
1

∣∣∣∣∣∣∣∣
M1,
M2

⎞
⎟⎟⎠

+
∑
l1 �=1

∑
l2

∑
(un

1 ,un
2 )∈T (n)

ε (U1,U2)

∑
(ũn

1 ,ũn
2 ,yn

1 )

∈T (n)
ε′ (U1,U2,Y1)

P

⎛
⎜⎜⎜⎜⎝

Un
1 (1, 1) = un

1 ,
Un

2 (1, 1) = un
2 ,

Un
1 (m1, l1) = ũn

1 ,
Un

2 (m2, l2) = ũn
2 ,

Y n
1 = yn

1

∣∣∣∣∣∣∣∣∣∣
M1,
M2

⎞
⎟⎟⎟⎟⎠ , (93)

where (b) follows by the union of events bound and by
decomposing the event in (a) onto two sets: {l1 = 1} and
{l1 	= 1}. Two summation terms on the right hand side of
(93) can be bounded by using similar arguments to the proof
of the inner bound for Theorem 4 (refer to the bounds on the
two summation terms in (87) in Appendix G) to get

P(m2 ∈ L, Ẽn = 1) ≤ 2−n(I(U2;Y1,U1)−αI(U1;U2)−4δ(ε′))

+ 2−n(I(U1,U2;Y1)−4δ(ε′)).

Since P(Ẽn = 1) tends to one as n→∞, for n sufficiently
large, P(m2 ∈ L|Ẽn = 1) ≤ P(m2 ∈ L, Ẽn = 1)2ε. The
expected cardinality of L given {Ẽn = 1} is then bounded as

E(|L| |Ẽn = 1) ≤ 1 +
∑

m2 �=M2

P(m2 ∈ L|Ẽn = 1)

≤ 1 + 2n(R2−I(U2;Y1,U1)+αI(U1;U2)+4δ(ε′)+ ε
n )

+ 2n(R2−I(U1,U2;Y1)+4δ(ε′)+ ε
n )

= 1 + 2n(R2−I(U2;Y1,U1)+αI(U1;U2)+4δ(ε′)+εn)

+ 2n(R2−I(U1,U2;Y1)+4δ(ε′)+εn), (94)

for n sufficiently large.
Define another indicator random variable F̃n = �{M2∈L}.

Since ε′ > ε and P(Ẽn = 1) tends to one as n → ∞, by the
conditional typicality lemma in [28, p. 27], P(F̃n = 1) tends
to one as n→∞. Then, for n sufficiently large, we have

H(M2 |Cn, M1, Y
n
1 )

= H(M2 |Cn, M1, Y
n
1 , Ẽn, F̃n) + I(M2; Ẽn, F̃n |Cn, M1, Y

n
1 )

≤ H(M2 |Cn, M1, Y
n
1 , Ẽn, F̃n) + 2

≤ 2 + P(F̃n = 0)H(M2 |Cn, M1, Y
n
1 , Ẽn, F̃n = 0)

+ H(M2 |Cn, M1, Y
n
1 , Ẽn, F̃n = 1)

≤ 2 + nR2 P(F̃n = 0) + H(M2 |Cn, Mn
1 , Y n

1 , Ẽn, F̃n = 1).

For the last term, we use the fact that if M2 ∈ L, then the
conditional entropy cannot exceed log(|L|):

H(M2 |Cn, M1, Y
n
1 , Ẽn, F̃n = 1)

(a)
= H(M2 |Cn, M1, Y

n
1 , Ẽn, F̃n = 1,L, |L|)

≤ H(M2 |Ẽn, F̃n = 1,L, |L|)

=
2nR2∑
l=0

P(|L| = l, Ẽn = 1)

×H(M2 |Ẽn = 1, F̃n = 1,L, |L| = l)

+
2nR2∑
l=0

P(|L| = l, Ẽn = 0)

×H(M2 |Ẽn = 0, F̃n = 1,L, |L| = l)

≤
2nR2∑
l=0

P(|L| = l, Ẽn = 1)

×H(M2 |Ẽn = 1, F̃n = 1,L, |L| = l)

+ nR2 P(Ẽn = 0)

≤
2nR2∑
l=0

P(|L| = l, Ẽn = 1) log(l) + nR2 P(Ẽn = 0)

≤
2nR2∑
l=0

P(|L| = l|Ẽn = 1) log(l) + nR2 P(Ẽn = 0)

= E[log(|L|)|Ẽn = 1] + nR2 P(Ẽn = 0)
(b)

≤ log(E[|L| |Ẽn = 1]) + nR2 P(Ẽn = 0)
(c)

≤ max
{
0, n(R2 − I(U1, U2; Y1) + 4δ(ε′) + εn),

n(R2 − I(U2; Y1, U1) + αI(U1; U2) + 4δ(ε′) + εn)
}

+ nR2 P(Ẽn = 0)
≤ n ·max

{
0, R2 − I(U1, U2; Y1),

R2 − I(U2; Y1, U1) + αI(U1; U2)
}

+ n4δ(ε′) + nεn + nR2 P(Ẽn = 0),

where (a) follows since the set L and its cardinality |L| are
functions of (Cn, M1, Y

n
1 ), (b) follows by Jensen’s inequality,

and (c) follows by (94) and the soft-max interpretation of the
log-sum-exp function [33, p. 72]. Substituting back gives

I(M2; M1, Y
n
1 |Cn)

= H(M2 |Cn)−H(M2 |Cn, M1, Y
n
1 )

= nR2 −H(M2 |Cn, M1, Y
n
1 )

≥ nR2 − 2− nR2 P(F̃n = 0)

−H(M2 |Cn, Mn
1 , Y n

1 , Ẽn, F̃n = 1)

≥ nR2 − 2− nR2 P(F̃n = 0)− n4δ(ε′)− nεn

− nR2 P(Ẽn = 0)− n ·max
{
0, R2 − I(U1, U2; Y1),

R2 − I(U2; Y1, U1) + αI(U1; U2)
}

(a)
= n

[
min{R2, I(U2; Y1, U1)− αI(U1; U2), I(U1, U2; Y1)}
− 4δ(ε′)− 2εn

]
,
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where (a) follows since both of the probabilities P(Ẽn = 0)
and P(F̃n = 0) tend to zero as n→∞.

APPENDIX I
PROOF OF PROPOSITION 3

We start with a version of Fano’s inequality for computation,
similar to Lemma 2 but for a fixed codebook this time.

Lemma 11: If
lim

n→∞
P (n)

e = 0

and
lim

n→∞
P(Mj is confusable) = 0,

for every j ∈ {1, 2} with aj 	= 0, then for every j ∈ {1, 2}
with aj 	= 0

H(Mj |Y n, Mjc) ≤ nεn

for some εn → 0 as n→∞.
Proof: First note that for every j ∈ {1, 2}, we have

H(Mj |Y n, Mjc)
≤ H(Mj , W

n
a |Y n, Mjc)

= H(Wn
a |Y n, Mjc) + H(Mj |Wn

a , Y n, Mjc)
(a)

≤ nεn + H(Mj |Wn
a , Y n, Mjc),

where (a) follows by Fano’s inequality. To bound the second
term in (a), let j be such that aj 	= 0 and let θj be an indicator
random variable which is 1 if Mj is confusable. Then, we get

H(Mj |Wn
a , Y n, Mjc)

(b)
= H(Mj |Wn

a , Y n, Mjc , Xn
1 , Xn

2 )
≤ H(Mj |Xn

j )

≤ H(Mj , θj |Xn
j )

(c)

≤ logq 2 + H(Mj |θj , X
n
j )

= logq 2 + H(Mj |θj = 1, Xn
j ) P(θj = 1)

≤ logq 2 + nRj P(θj = 1)
(d)

≤ nεn,

where (b) follows since (Xn
1 , Xn

2 ) is a function of (Mjc , Wn
a )

when aj 	= 0, (c) follows since θj is a binary random variable,
and (d) follows since P(θj = 1) tends to zero as n→∞.

Suppose now that a rate pair (R1, R2) is achievable. Let j
be such that aj 	= 0. Then,

nRj = H(Mj |Mjc)
(a)

≤ I(Mj; Y n |Mjc) + nεn

=
n∑

i=1

I(Mj ; Yi |Y i−1, Mjc) + nεn

=
n∑

i=1

I(Mj , Xji; Yi |Y i−1, Mjc , Xjci) + nεn

≤
n∑

i=1

I(Mj , Y
i−1, Mjc , Xji; Yi |Xjci) + nεn

(b)
=

n∑
i=1

I(Xji; Yi |Xjci) + nεn

(c)
= nI(XjQ; YQ |XjcQ, Q) + nεn,

where step (a) follows by Lemma 11, (b) follows since
(M1, M2, Y

i−1) → (X1i, X2i) → Yi form a Markov chain,
and (c) follows by defining a time sharing random variable Q
that is uniform on [n] and independent from (Xn

1 , Xn
2 , Y n).

We can continue from (a) above to provide another bound
on nRj as follows.

nRj ≤ I(Mj; Y n |Mjc) + nεn

= I(M1, M2; Y n)− I(Mjc ; Y n) + nεn

(d)

≤ I(M1, M2; Y n)− I(Mjc ; Wn
a , Y n) + 2 nεn

=
n∑

i=1

I(M1, M2; Yi |Y i−1)

−
n∑

i=1

I(Mjc ; Wa,i, Yi |W i−1
a , Y i−1) + 2 nεn

=
n∑

i=1

I(M1, M2, X1i, X2i; Yi |Y i−1)

−
n∑

i=1

I(Mjc , Xjci; Wa,i, Yi |W i−1
a , Y i−1) + 2 nεn

(e)
=

n∑
i=1

I(M1, M2, X1i, X2i; Yi |Y i−1)

−
n∑

i=1

I(Mjc , Xjci; Wa,i, Yi |Ti) + 2 nεn

≤
n∑

i=1

I(M1, M2, Y
i−1, X1i, X2i; Yi)

−
n∑

i=1

I(Xjci; Wa,i, Yi |Ti) + 2 nεn

(f)
=

n∑
i=1

I(X1i, X2i; Yi)

−
n∑

i=1

I(Xjci; Wa,i, Yi |Ti) + 2 nεn

= nI(X1Q, X2Q; YQ |Q)
− nI(XjcQ; Wa,Q, YQ |TQ, Q) + 2nεn,

where step (d) follows by Fano’s inequality, (e) follows
by defining Ti := (W i−1

a , Y i−1), and (f) follows since
(M1, M2, Y

i−1) → (X1i, X2i) → Yi form a Markov chain.
Note that both Ti → (X1i, X2i) → Wa,i and (Ti, Wa,i) →
(X1i, X2i)→ Yi each form a Markov chain.

We next bound the sum rate using the fact that a1, a2 	= 0
as follows.

n(R1 + R2)
= H(M1, M2)
= I(M1, M2; Y n) + H(M1, M2, W

n
a |Y n)

(g)

≤ I(M1, M2; Y n) + H(M1, M2 |Wn
a , Y n) + nεn
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= I(M1, M2; Y n) + H(M1 |Wn
a , Y n)

+ H(M2 |M1, W
n
a , Y n) + nεn

(h)

≤ I(M1, M2; Y n) + H(M1 |Wn
a , Y n) + 2nεn

= I(M1, M2; Y n) + H(M1 |Wn
a , Y n) + H(M2 |Wn

a , Y n)
−H(M1, M2 |Wn

a , Y n) + H(M1 |Wn
a , Y n, M2) + 2nεn,

(95)

where (g) follows by Fano’s inequality and (h) follows
by Lemma 11 since a2 	= 0. Note that since a1 	= 0,
by Lemma 11, we also have

H(M1 |Wn
a , Y n, M2) ≤ nεn.

Utilizing this observation in (95), we continue with

n(R1 + R2)
≤ I(M1, M2; Y n) + H(M1 |Wn

a , Y n)
+ H(M2 |Wn

a , Y n)−H(M1, M2 |Wn
a , Y n) + 3 nεn

= I(M1, M2; Y n) + I(M1, M2; Wn
a , Y n)

− I(M1; Wn
a , Y n)− I(M2; Wn

a , Y n) + 3 nεn

=
n∑

i=1

I(M1, M2; Yi |Y i−1)

+
n∑

i=1

I(M1, M2; Wa,i, Yi |W i−1
a , Y i−1)

−
n∑

i=1

I(M1; Wa,i, Yi |W i−1
a , Y i−1)

−
n∑

i=1

I(M2; Wa,i, Yi |W i−1
a , Y i−1) + 3 nεn

=
n∑

i=1

I(M1, M2, X1i, X2i; Yi |Y i−1)

+
n∑

i=1

I(M1, M2, X1i, X2i; Wa,i, Yi |Ti)

−
n∑

i=1

I(M1, X1i; Wa,i, Yi |Ti)

−
n∑

i=1

I(M2, X2i; Wa,i, Yi |Ti) + 3 nεn

≤
n∑

i=1

I(M1, M2, Y
i−1, X1i, X2i; Yi)

+
n∑

i=1

I(M1, M2, X1i, X2i; Wa,i, Yi |Ti)

−
n∑

i=1

I(X1i; Wa,i, Yi |Ti)

−
n∑

i=1

I(X2i; Wa,i, Yi |Ti) + 3 nεn

(k)
=

n∑
i=1

I(X1i, X2i; Yi) +
n∑

i=1

I(X1i, X2i; Wa,i, Yi |Ti)

−
n∑

i=1

I(X1i; Wa,i, Yi |Ti)−
n∑

i=1

I(X2i; Wa,i, Yi |Ti) + 3 nεn

= nI(X1Q, X2Q; YQ |Q) + nI(X1Q, X2Q; Wa,Q, YQ |TQ, Q)
− nI(X1Q; Wa,Q, YQ |TQ, Q)
− nI(X2Q; Wa,Q, YQ |TQ, Q) + 3 nεn,

where step (k) follows since (M1, M2, W
i−1
a , Y i−1) →

(X1i, X2i)→ (Wa,i, Yi) form a Markov chain.
It remains to show the dependence balance condition in (39).

0 ≤ I(M1; M2 |Wn
a , Y n)

(a)
= I(M1; M2 |Wn

a , Y n)− I(M1; M2)
= H(M1 |Wn

a , Y n)−H(M1 |M2, W
n
a , Y n)

−H(M1) + H(M1 |M2)
= I(M1; Wn

a , Y n |M2)− I(M1; Wn
a , Y n)

=
n∑

i=1

I(M1; Wa,i, Yi |M2, W
i−1
a , Y i−1)

−
n∑

i=1

I(M1; Wa,i, Yi |W i−1
a , Y i−1)

=
n∑

i=1

I(M1, X1i; Wa,i, Yi |M2, X2i, W
i−1
a , Y i−1)

−
n∑

i=1

I(M1, X1i; Wa,i, Yi |W i−1
a , Y i−1)

≤
n∑

i=1

I(M1, M2, X1i; Wa,i, Yi |X2i, W
i−1
a , Y i−1)

−
n∑

i=1

I(X1i; Wa,i, Yi |W i−1
a , Y i−1)

(b)
=

n∑
i=1

I(X1i; Wa,i, Yi |X2i, W
i−1
a , Y i−1)

−
n∑

i=1

I(X1i; Wa,i, Yi |W i−1
a , Y i−1)

=
n∑

i=1

I(X1i; Wa,i, Yi |X2i, Ti)−
n∑

i=1

I(X1i; Wa,i, Yi |Ti)

= nI(X1Q; Wa,Q, YQ |X2Q, TQ, Q)
− nI(X1Q; Wa,Q, YQ |TQ, Q),

where (a) follows since M1 and M2 are independent and
(b) follows since (M1, M2, W

i−1, Y i−1) → (X1i, X2i) →
(Wi, Yi) form a Markov chain.

Letting X1 = X1Q, X2 = X2Q, Wa = Wa,Q, Y = YQ, and
T = TQ and n→∞ completes the proof.
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