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Abstract—We study the best exponential decay in the (de-
terministic) blocklength of the probability of error that can be
achieved in the transmission of a single bit over the Gaussian
channel with an active noisy Gaussian feedback link. We impose
an expected block power constraint on the forward link and study
both almost-sure and expected block power constraints on the
feedback link. In both cases the best achievable error exponent
is finite and grows approximately proportionally to the larger of
the signal-to-noise ratios on the forward and feedback links. The
error exponents under almost-sure block power constraints are
typically strictly smaller than under expected constraints. The
error exponents achievable with active feedback are shown to
be superior to those that are achievable with passive feedback.
Some of the results extend to communication at arbitrary rates
below capacity and to general discrete memoryless channels.

I. INTRODUCTION

This paper studies error exponents for the Gaussian channel
with noisy feedback. Unlike our previous work, which focused
on passive feedback [1], [2], [3], here we focus on active feed-
back. Thus, the time-k symbol Uk fed to the feedback channel
need not be the time-k received symbol Yk: it can be a function
of Yk and of the previous received symbols Y1, . . . , Yk−1. As
in our previous work, we consider only transmission schemes
of a deterministic blocklength n. (Random transmission times
for discrete memoryless channels with active feedback are
discussed in [4].) And, although some of our results extend to
more general models, we focus on the Gaussian model where
both the forward channel and the feedback channel are additive
white Gaussian noise channels. To simplify the analysis we
focus on the case where the message to be transmitted is
binary, i.e., takes on the values 0 and 1 equiprobably (but see
(13) which is applicable to all rates of communication between
zero and capacity). Our communication scheme is depicted in
Figure 1.

Critical to our analysis is the precise nature of the power
constraints that are imposed on the forward and feedback
channels. On the forward channel we impose an expected
block power constraint, where the time-average of the squared
channel inputs is a random variable (whose realization may
depend on the message and on the realization of the forward
and feedback channels) whose expectation (over the message
and over the noise sequences on the forward and feedback
channels) is upper-bounded by some fixed (deterministic)

positive constant P; see (8) ahead. For the feedback link,
we consider two types of power constraints: an expected
block power constraint ((9) ahead) and an almost-sure block
power constraint ((10)). In the latter, the time-average of the
squared inputs to the feedback channel must not exceed PFB
irrespective of the message and of the channel realizations.
Clearly, an almost-sure power constraint is more restrictive
than an expected power constraint.

We do not consider an almost-sure block power constraint
on the forward channel because under this constraint even a
noise-free feedback link does not improve the two-codewords
error exponent [5], [6].

Our main result is that—although a noise-free feedback
link allows the probability of error to decay faster than
exponentially in n [7] [8] [9]—if the feedback link is noisy
the probability of error cannot decay faster than exponentially.
This is true even if we only impose an expected block power
constraint on the feedback link. Moreover, we provide upper
and lower bounds on the best achievable exponent both for
expected and almost-sure block power constraints. At high
signal-to-noise ratios (SNRs) on the feedback link, the error
exponents in both cases grow as an affine function of the
SNR. A more formal statement of the results will be given in
Section II once we have formalized the problem’s statement.
For proofs please see [10].

II. THE PROBLEM STATEMENT AND MAIN RESULTS

We consider the transmission of a single bit H , where
H takes on the values 0 and 1 equiprobably. Let the sets
X , Y , U , and Z all be the reals. A blocklength-n code
for transmitting H over our channel consists of a forward-
channel encoding rule, a feedback-channel encoding rule, and
a decoder as described next. A forward-channel encoding rule
is specified by n functions1 f1, . . . , fn, where

fk : {0, 1} × Zk−1 → X , k = 1, . . . n. (1)

It is understood that the time-k channel input Xk is computed
according to the rule

Xk = fk

(
H,Zk−1

)
, k = 1, . . . , n, (2)

1All functions from R to R in this paper are assumed to be Borel
Measurable.
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Fig. 1. The Gaussian channel with a coded noisy feedback link.

where we use A` to denote A1, . . . , A` and where, for conve-
nience, we set

Z0 = 0. (3)

The feedback-channel encoding rule is a collection of n
functions g1, . . . , gn, where

gk : Yk → U , k = 1, . . . , n. (4)

It is understood that the symbol Uk that is fed to the feedback
channel at time k is given by

Uk = gk

(
Y k

)
, k = 1, . . . , n. (5)

(The special case where gk(Y k) is Yk corresponds to passive—
also knows as “uncoded” or “symbol-by-symbol”—feedback.)

A decoder φ is a decision rule for guessing H based on Y n.
Thus,

φ : Yn → {0, 1}. (6)

We denote the decision regions by D0 and D1 so

Dν =
{
y ∈ Yn : φ(y) = ν

}
, ν = 0, 1, (7)

where we use a to denote the n-tuple (a1, . . . , an).
The communication system that we consider operates as

follows. The message, along with the forward and backward
channel noise components, H,N1, . . . , Nn, V1, . . . , Vn, are
independent random variables, where Nk ∼ N (0, σ2) and
Vk ∼ N (0, σ2

FB) for every k ∈ {1, . . . , n}. We assume
throughout that σ and σFB are strictly positive. At time k, the
input Xk to the forward channel is generated according to (2).
This input is corrupted by the forward channel noise, yielding
the forward-channel output Yk = Xk + Nk. The feedback-
channel encoder now computes the symbol Uk from Y k

according to (5). The symbol Uk, which forms the time-k
input to the feedback channel is corrupted by the feedback-
channel noise to yield Zk = Uk + Vk at the output of that
channel. The conditional density w(yk|xk) of Yk given Xk is
thus

w(yk|xk) =
1√

2πσ2
e−

(yk−xk)2

2σ2 , xk, yk ∈ R,

and the conditional density wFB(zk|uk) of Zk given Uk is

wFB(zk|uk) =
1√

2πσ2
FB

e
− (zk−uk)2

2σ2
FB , zk, uk ∈ R.

We only consider forward-channel encoding rules that sat-
isfy the expected block power constraint

E
[ n∑

k=1

f2
k

(
H,Zk−1

)]
≤ nP, (8)

where P > 0 is some given constant designating the allowed
average power (per transmission) on the forward-channel.

For the feedback-channel encoding rules we consider two
types of power constraints. An almost-sure block power con-
straint

n∑
k=1

g2
k

(
Y k

)
≤ nPFB, Y ∈ Yn, (9)

and an expected block power constraint

E
[ n∑

k=1

g2
k

(
Y k

)]
≤ nPFB. (10)

In both cases we assume that PFB is strictly positive. (The case
where PFB = 0 corresponds to the no-feedback case.) We can
now present our main results.
Almost-Sure Block Power Constraints: Let us denote by
pa.s.

e

(
P/σ2,PFB/σ2

FB, n
)

the least probability of error that can
be achieved by a blocklength-n coding scheme subject to the
almost-sure constraint (9). We show that

lim
n→∞

− 1
n

log pa.s.
e

(
P/σ2,PFB/σ2

FB, n
)
≤

P

2σ2
+

2
√

(PFB + σ2
FB)PFB

σ2
FB

, (11)

and we present a sequence of codes that proves that

lim
n→∞

− 1
n

log pa.s.
e

(
P/σ2,PFB/σ2

FB, n
)
≥ P

2σ2
+

2PFB

σ2
FB

. (12)

Moreover, (11) generalizes to the case where there are more
than two codewords. If we denote by R the rate of communica-
tion, i.e., the ratio of the logarithm of the number of messages
to the block length, and if we denote by Ea.s.

FB (R) the best
achievable error exponent then

Ea.s.
FB (R) ≤ ENoFB(R) +

2
√

(PFB + σ2
FB)PFB

σ2
FB

, (13)

where ENoFB(R) is the reliability function of the forward
channel in the absence of feedback.



Expected Block Power Constraints: Let us denote by
pexp

e
(
P/σ2,PFB/σ2

FB, n
)

the least probability of error that can
be achieved by a blocklength-n coding scheme subject to the
expected block power constraint (10). We show that2

lim
n→∞

− 1
n

log pexp
e

(
P/σ2,PFB/σ2

FB, n
)
≤(√

P + σ2 +
√

P
)2

σ2
+

(√
PFB + σ2

FB +
√

PFB

)2

σ2
FB

, (14)

and we present a sequence of codes that achieves

lim
n→∞

− 1
n

log pexp
e

(
P/σ2,PFB/σ2

FB, n
)
≥ 2P

σ2
+

2PFB

σ2
FB

. (15)

III. DISCUSSION

We have seen that even if both the forward link and the
feedback link are subjected to expected block power con-
straints, the best achievable error exponent is finite. Roughly
speaking—irrespective of the nature of the feedback power
constraint—the best error exponent is roughly proportional to
the larger of the signal-to-noise ratio on the forward link P/σ2

and the signal-to-noise ratio on the feedback channel PFB/σ2
FB.

In this very rough sense, active feedback is not much different
from passive symbol-by-symbol feedback [2].

However, a more careful analysis based on our previous
results [1], [2] shows that the best error exponent for two
messages with passive (symbol-by-symbol) feedback is upper-
bounded by

1
2

(
P

σ2
+

P

P + σ2
· PFB

σ2
FB

)
, (16)

which can be further upper-bounded by

1
2

(
P

σ2
+

PFB

σ2
FB

)
. (17)

On the other hand, an achievable error exponent (15) for an
active feedback with the same feedback signal-to-noise ratio
is

2
(

P

σ2
+

PFB

σ2
FB

)
.

Hence, the freedom to code over the feedback link can at
least quadruple the error exponent of binary communication.
It would be interesting to see how much active feedback gains
over passive feedback for a positive rate R.

While our focus has been on Gaussian channels with
Gaussian feedback channels, some of our techniques are more
general. For example, consider a setting where the forward and
feedback channels are binary symmetric channels (BSCs) with
crossover probabilities ε, εFB ≤ 1/2. In this case we obtain
using similar techniques that the reliability function with noisy
active feedback cannot exceed

ln
1− εFB

εFB
+ ENoFB(R; ε), (18)

where ENoFB(R; ε) is the reliability function of the BSC of
crossover probability ε.

2In [10] we also present a tighter bound than (14).

In some cases, particularly when the feedback channel is
very noisy, this bound can be tighter than the trivial bound that
bounds the reliability function by that with perfect feedback
and bounds the latter by the best two-codeword error exponent

1
2

ln
1

4ε(1− ε)
. (19)

(The fact that feedback does not improve the best two-
codeword error exponent on a discrete memoryless channel
appears in the Ph.D. thesis of Berlekamp [11] who attributes
this result to Gallager and Shannon.)

The bound in (18) complements the recent work of Bur-
nashev and Yamamoto [12] on the reliability function of the
binary symmetric channel with a passive binary symmetric
feedback link. (Upper bounds on the latter reliability function
can be derived using techniques similar to those we used in
[2].)
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