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Abstract—This paper reviews the relationship among several
notions of capacity regions of a general discrete memoryless
network under different code classes and performance criteria,
such as average vs. maximal or block vs. bit error probabilities
and deterministic vs. randomized codes. Applications of these
meta-theorems include several structural results on capacity
regions and a simple proof of the network equivalence theorem.

I. INTRODUCTION

Consider a noisy network communication system with N
nodes, where node k ∈ [1 : N ] := {1, . . . , N} wishes to

reliably communicate a message Mk at a rate Rk bits per

transmission to a set of destination nodes Dk ⊆ [1 : N ]
over the noisy network. This system can be modeled as

a multimessage discrete memoryless network (DMN) N =
(X1 × · · · × XN , p(y1, . . . , yN |x1, . . . , xN ), Y1 × · · · × YN )
that consists of N sender–receiver alphabet pairs (Xk,Yk), k ∈
[1 : N ], and a collection of probability mass functions (pmfs)

p(y1, . . . , yN |x1, . . . , xN ). The network is memoryless in the

sense that

p(y1i, . . . , yNi|x
i
1, . . . , x

i
N , yi−1

1 , . . . , yi−1
N ,m)

= pY N |XN (y1i, . . . , yNi|x1i, . . . , xNi), i ∈ [1 : n].

A (2nR1 , . . . , 2nRN , n) code for the DMN consists of

• N message sets [1 : 2nR1 ], . . . , [1 : 2nRN ],
• a set of encoders φki : [1 : 2nRk ] × Yi−1

k → Xki for

i ∈ [1 : n] and k ∈ [1 : N ], and

• a set of decoders ψd : [1 : 2nRk ] × Yn
d →

⋃

k:d∈Dk
[1 :

2nRk ] ∪ {e} for d ∈
⋃

k Dk.

Assume that (M1, . . . ,MN) is uniformly distributed over [1 :
2nR1 ] × · · · × [1 : 2nRN ]. The average probability of error is

defined as

P (n)
e = P{M̂kd ̸= Mk for some k ∈ [1 : N ], d ∈ Dk}.

A rate tuple (R1, . . . , RN ) is said to be achievable if there

exists a sequence of (2nR1 , . . . , 2nRN , n) codes such that

limn→∞ P
(n)
e = 0. The capacity region C (N ) of the DMN

is the closure of the set of achievable rates.

Note that the above definition of capacity region follows the

standard criteria such as deterministic encoders and decoders,

and average probability of error of the entire message block.

In the following, we recall alternative criteria in defining the

capacity region (cf. [1], [2]).

Deterministic vs. randomized code. The deterministic en-

coders and decoders can be replaced by randomized encoders

and decoders as Φki(·) = φki(·,Wk) and Ψd(·) = ψd(·,Wd),
where (W1, . . . ,WN ) are independent of (M1, . . . ,MN) and

p(y1i, . . . , yNi|x
i
1, . . . , x

i
N , yi−1

1 , . . . , yi−1
N ,m,wN )

= pY N |XN (y1i, . . . , yNi|x1i, . . . , xNi).

If W1, . . . ,WN are independent and identically distributed

(i.i.d.) Unif[0, 1], then the corresponding capacity region is

denoted by Crand(N ). If Wk ≡ W ∼ Unif[0, 1], k ∈ [1 : N ],
which induces more general cooperation among the nodes,

then the corresponding capacity region is denoted by Ccr(N ).

Average vs. maximal probability of error. If the average

probability of error is replaced by the maximal probability of

error

P (n)
e,max = max

m1,...,mN

P{M̂kd ̸= mk for some k, d

|M1 = m1, . . . ,MN = mN},

then the corresponding capacity region is denoted by

Cmax(N ).

Block vs. bit error probability. Suppose that we represent

each message Mk = (Sk1, . . . , Sk,nRk
) as a sequence of nRk

random bits. If the block error probability is replaced by the

average bit error probability

P
(n)
e,bit = max

k,d

1

nRk

nRk
∑

ν=1

P{Ŝkdν ̸= Skν},

then the corresponding capacity region is denoted by Cbit(N ).

These alternatives can be combined into 12 = 3 × 2 × 2
different notions of capacity region. We denote them as

Cα,β,γ(N ), where

α = det/rand/cr, β = avg/max, γ = blk/bit.

For example, the standard capacity region with deterministic

code and average block error probability can be denoted as

C (N ) = Cdet,avg,blk(N ).
In this paper, we collect several meta-theorems regarding

these notions of capacity regions, such as “when and how
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much randomization helps?” and “whether the bit error prob-

ability criterion is much easier to satisfy.” These results are

not necessarily new, but have been scattered in the literature

sometimes in implicit forms. Using these results, we clarify

the relationship among the twelve notions of capacity regions.

As a more significant application, we revisit the network

equivalence theorem by Koetter, Effros, and Médard [3] that

roughly states that the capacity region of a network with

orthogonal noisy links depends only on the capacities of

these links, and provide a simple proof that uses one of

the structural results, C (N ) = Ccr,avg,bit(N ), the network-

stacking technique [3], and the universal channel simulation

lemma [4].

Throughout the paper, we mostly follow the notation in [5].

In particular, a random variable is denoted by an uppercase

letter (e.g., X,Y, Z) and its realization is denoted by a

lowercase letter (e.g., x, y, z). The shorthand notation Xn is

used to denote the tuple of random variables (X1, . . . , Xn),
and xn is used to denote their realizations. We measure the

difference between two probability measures P and Q on X
with pmfs p(x) and q(x) by the total variation distance

dTV(P,Q) = dTV(p(x), q(x))

= max
A⊆X

|P(A)− Q(A)|

=
1

2

∑

x∈X

|p(x) − q(x)| =
1

2
∥p(x)− q(x)∥1.

II. META-THEOREMS ON THE TWELVE CAPACITY

REGIONS

In this section, we state several meta-theorems on the

capacity regions defined in Section I and ultimately establish a

general relationship among all twelve of them. The following

is straightforward.

Lemma 1:

Cdet,avg,γ(N ) ⊆ Crand,avg,γ(N ) ⊆ Ccr,avg,γ(N ), (1)

Cα,max,γ(N ) ⊆ Cα,avg,γ , (2)

Cα,β,blk ⊆ Cα,β,bit (3)

for all α = det/rand/cr, β = avg/max, and γ = blk/bit.
Since the (common) randomness is independent of the

messages and the channel, it can be easily shown (cf. [5, Prob.

3.6]) that its availability does not increase the capacity region

under the average error probability criterion.

Lemma 2 (Randomization does not help on average):

Cdet,avg,γ(N ) = Crand,avg,γ(N ) = Ccr,avg,γ(N ). (4)

Dueck [6] showed that the capacity region under the max-

imal error probability criterion can be strictly smaller than

that under the average error probability criterion via the

counterexample of the binary erasure multiple access channel,

that is,

Cdet,max,γ(N ) � Cdet,avg,γ(N ). (5)

Noting that the two capacity regions coincide at each of the

N axes (for example, R2 = · · · = RN = 0) and using time

sharing, we can establish the following.

Lemma 3 (Cost of worst-case error):

Cdet,avg,γ(N ) ⊆ NCdet,max,γ(N )

= {NRn : Rn ∈ Cdet,max,γ(N )}. (6)

It is clear that common randomness can be exploited to

construct a good code under the maximal error probability

criterion from a good code under the average error probability

criterion; each pair of encoder and decoder can dither its

message using the common randomness (that is, send M +W
mod 2nR, where W is uniformly distributed and independent

of M ). One important implication of Lemma 3 is that local

randomness can achieve the same goal by first transmitting the

dither W with a good code under the maximal error probability

criterion and then using it as the common randomness [1,

Problem 14.5]. Since the same common randomness can be

used repeatedly, the rate loss is asymptotically negligible. This

argument establishes the following.

Lemma 4 (Local randomness transforms worst to average):

Crand,max,γ(N ) = Crand,avg,γ(N ). (7)

Note that Lemmas 2 and 4 imply that

Crand,max,γ(N ) = Ccr,max,γ(N ), (8)

since Crand,avg,γ(N ) ⊆ Ccr,max,γ(N ) ⊆ Ccr,avg,γ(N ).
Now we turn our attention to the bit vs. block error proba-

bility criteria. By concatenating a good (inner) code under the

bit error probability criterion with a capacity-achieving (outer)

code for the binary symmetric channel with exponentially

small block error probability (cf. [7]), we can establish the

following (the proof of which will be given elsewhere).

Lemma 5 (Bits are no cleaner on average than as a whole):

Cdet,β,bit(N ) = Cdet,β,blk(N ). (9)

Combined with Lemmas 2 and 4, this implies more gener-

ally that

Cα,β,bit(N ) = Cα,β,blk(N ). (10)

We can summarize the relationship among the twelve ca-

pacity regions as follows (see also Fig. 1):

Theorem 1: If α ̸= det,

Cα,β,γ(N ) = Cα,β,γ(N ). (11)

Moreover, in general,

Cdet,max,γ(N ) � Cdet,avg,γ(N ) ⊆ NCdet,max,γ(N ). (12)

Remark 1: While our multimessage DMN model does not

include broadcast, namely, multiple messages communicated

by a single source to different destination nodes, a similar

structural result can be easily established. Note that when

there is only a single source node (with multiple messages to

be multicast and broadcast), then all twelve capacity regions

are identical. This follows by a simple modification of the

technique by Willems [8] (see also [1, Problem 14.13] and [5,

Problem 8.11]) for single-hop broadcast channels.
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Cdet,max,blk(N )
(5)

� Cdet,avg,blk(N )
(4)
= Ccr,avg,blk(N )

(4)
= Crand,avg,blk(N )

(7)
= Crand,max,blk(N )

(8)
= Ccr,max,blk(N )

∥ (9) ∥ (9) ∥ (10) ∥ (10) ∥ (10) ∥ (10)

Cdet,max,bit(N )
(5)

� Cdet,avg,bit(N )
(4)
= Ccr,max,bit(N )

(4)
= Crand,avg,bit(N )

(7)
= Crand,max,bit(N )

(8)
= Ccr,max,bit(N )

Fig. 1. The relationship among the twelve capacity regions. Here the numbers on top of binary relations refer to the corresponding equation numbers in
Section II.

III. STRONG CHANNEL SIMULATION AND A PROOF OF

THE NETWORK EQUIVALENCE THEOREM

As an application of the meta-theorems in Section II and

their corollaries, we provide a simple proof of the network

equivalence theorem [3]. This theorem by Koetter, Effros,

and Médard, which states that the capacity region (defined

operationally as in Section I) of a network of orthogonal

discrete memoryless channels (DMCs) of nonzero capacities

stays the same when the DMCs are replaced by noiseless links

with matching capacities, is significant in that it holds even

when the capacity region itself does not have a computable

characterization (cf. earlier results on equivalence of multicast

networks [9], [10]). One can interpret the network equivalence

theorem as a manifestation of the optimality of the separation

between channel coding and network coding, and this view has

spurred even stronger separation theorems for source, channel,

and network coding; see, for example, [11], [12].

For simplicity of the presentation, we consider the problem

of unicasting M = M1 from node 1 to node N (i.e., R2 =
· · · = RN = 0, D1 = N ) and focus on the corresponding

capacity C(N ), namely, the maximum achievable rate of M .

The DMN of our interest has the form

p(y1, y2, (y3, y), y4, . . . , yN |x1, (x2, x), x3, x4, . . . , xN )

= p(yN |xN )p(y|x), (13)

where p(y|x) is an orthogonal DMC from node 2 to node 3;

see Fig. 2. Here (X2, X) is the channel input at node 2 and

(Y3, Y ) is the channel output at node 3. Therefore, the encoder

at node 2 is

(x2i, xi)(y
i−1
2 ), i ∈ [1 : n],

and the encoder at node 3 is

x3i(y
i−1
3 , yi−1), i ∈ [1 : n].

The operations at other nodes are as before (with M4 = · · · =
MN = ∅). We assume throughout this section that a DMN

follows the structure in (13).

We are now ready to state a version of the network equiva-

lence theorem [3], which captures the essence of the result by

showing the effect of the (capacity of the) orthogonal DMC

on the network capacity.

Theorem 2: Let N1 = q0(y
N |xN )q1(y|x) and N2 =

q0(y
N |xN )q2(ỹ|x̃) be two DMNs, where q1(y|x) and q2(ỹ|x̃)

are DMCs (on potentially different alphabet pairs) with capac-

ities C1 < C2. Then,

C(N1) ≤ C(N2).

p(y1, . . . , yN |x1, . . . , xN )

p(y
|x)

M M̂

1

2

3

j

k

N

Fig. 2. DMN with an orthogonal DMC p(y|x) from node 2 to node 3.

Roughly speaking, Theorem 2 and its generalization to

multiple messages state that the network capacity region

depends on the constituent DMC only through its capacity

C. (To make this statement precise, we need some continuity

of the network capacity region in C, which holds, for example,

when C > 0 [3] or when the network has special structures

[9], [10], [13].)

The existing proofs [3], [11], [12] of the network equiv-

alence theorem and its generalizations are based on joint

typicality of input–output sequences in the network or on

arguments similar to empirical channel simulation [14] of

the DMC q1 from the DMC q2. Throughout these proofs,

the network-stacking technique [3], which combines multiple

independent copies of the network in a carefully orchestrated

manner, plays a crucial role.

Our proof is no exception and hinges heavily on the

network-stacking technique. We leverage, however, the fol-

lowing fact from Theorem 1:

C(N ) = Ccr,avg,bit(N ). (14)

This identity allows for the use of strong channel simulation

of q1 from q2, which leads to a simple, alternative proof of

Theorem 2.

Before we describe the detailed proof, we recall key results

on channel simulation.

A. Channel Simulation

Consider a pair of DMCs (X , q1(y|x),Y) and

(X̃ , q2(ỹ|x̃), Ỹ) with capacities C1 and C2, respectively.

Suppose that a pair of sender and receiver, who share

common randomness W ∼ Unif[0, 1], is connected through

the DMC q2(ỹ|x̃) and wishes to simulate the behavior of the

DMC q1(y|x) for l uses of the channel; see Fig. 3. More
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xl

W

q1(y|x)

Y lX̃l Ỹ l

Encoder q2(ỹ|x̃) Decoder

Fig. 3. Simulating q1(y|x) from q2(ỹ|x̃).

formally, we define a length l channel simulation code (f, g)
by

• f : X l × [0, 1] → X̃ l that assigns x̃l to each (xl, w) and

• g : Ỹ l × [0, 1] → Y l that assigns yl to each (ỹl, w).

The code (f, g) induces the conditional pmf

p(yl|xl) =

∫ 1

0

( l
∏

j=1

q2(ỹj |fj(x
l, w))

)

p(yl|ỹl, w) dw,

where fj denotes the j-th coordinate of f(xl, w) and

p(yl|ỹl, w) = 1 if yl = g(ỹl, w) and 0 otherwise. The fidelity

of simulation is measured by

max
xl

dTV

(

p(yl|xl), q1(y
l|xl)

)

, (15)

where q1(y
l|xl) =

∏l

j=1 q1(yj |xj).
We state the asymptotic behavior of channel simulation,

which is a slight generalization of a recent result by Bennett

et al. [4].

Lemma 6 (Universal channel simulation): If C1 < C2, then

there exists a sequence of length-l channel simulation codes

(f, g) such that

lim
l→∞

max
xl

dTV

(

p(yl|xl), q1(y
l|xl)

)

= 0.

The proof of this lemma is somewhat involved and will be

presented elsewhere.

We remark on two other fidelity criteria for channel simu-

lation that are widely used in the literature. Let X l ∼ p(xl) =
∏l

j=1 pX(xj). First, empirical channel simulation [14] aims

to achieve

dTV

(

π(x, y|X l, Y l), p(x)q1(y|x)
)

→ 0 in probability,

where π(x, y|X l, Y l) := |{j : (Xj , Yj) = (x, y)}| / l denotes

the joint type of (X l, Y l). Second, strong channel simula-

tion [14]–[17] aims to achieve

lim
l→∞

dTV

(

p(xl)p(yl|xl), p(xl)q1(y
l|xl)

)

= 0.

It is easy to verify that universal simulation implies strong

simulation and the latter, in turn, implies empirical simulation.

B. Proof of Theorem 2

In light of (14), it suffices to establish that

C(N1) ≤ Ccr,avg,bit(N2).

We show this by constructing a (2nlR, nl) randomized code

for N2 with average bit error probability ≤ 2ϵ from l copies

of a (2nR, n) code (φ,ψ) = (φn
1 , . . . ,φ

n
N ,ψN ) for N1 with

average (block) error probability ≤ ϵ and n copies of a length-

l code (f, g) for simulating q1 from q2 with maximum total

variation distance ≤ ϵ/n (cf. (15)).

As illustrated in Fig. 4, we apply the length-l simulation

code (f, g) to the DMC q2 n times over transmission times

(1, . . . , l), (l + 1, . . . , 2l), . . . , ((n − 1)l + 1, . . . , nl). This

“inner code” induces the channel

p(ynl|xnl) =

n
∏

i=1

p(yil(i−1)l+1|x
il
(i−1)l+1)

from the physical channel
∏nl

t=1 q2(ỹt|x̃t). We then apply the

(2nR, n) code (φ,ψ) to the channel q0(y
N |xN ), as well as

the induced channel p(ynl|xnl), l times over transmission

times (1, l + 1, . . . , (n − 1)l + 1), (2, l + 2, . . . , (n − 1)l +
2), . . . , (l, 2l, . . . , nl) along the horizontal direction in Fig. 4.

In particular, the j-th component of this “outer code” is used

to communicate 2nR bits SnR(j) with channel inputs Xn(j)
and

Xn
∗ (j) = (Xn

1 (j), X
n
2 (j), . . . , X

n
N(j)),

and outputs Yn(j) and

Y n
∗ (j) = (Y n

1 (j), Y n
2 (j), . . . , Y n

N (j)).

Note that the overall joint pmf of the message bits and

channel variables is of the form

l
∏

j=1

[

p(snR(j))p(yn∗ (j)|x
n
∗ (j))

·

( n
∏

i=1

p(x∗i(j), xi(j)|y
i−1
∗ (j), yi−1(j))

)

· p(ŝnR(j)|ynN (j))

]

·
n
∏

i=1

p(yil(i−1)l+1|x
il
(i−1)l+1),

where the factors on the second and third lines follow the

(2nR, n) code (φ,ψ) and the factors on the last line follow

the length-l simulation code (f, g). We denote this (true)

1 l + 1 (i− 1)l + 1 (n− 1)l + 1

2 l + 2 (i− 1)l + 2 (n− 1)l + 2

j l + j (i− 1)l + j (n− 1)l + j

l 2l il nl

(f, g)

(φ,ψ)

Fig. 4. A network-stacking technique of constructing a (2nlR, nl) code for
N2 by horizontally applying a (2nR, n) code (φ,ψ) for N1 and vertically
applying a length-l channel simulation code (f, g). The numbers in the boxes
denote the transmission time indices.
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probability law by P. Now, if the same code is used instead

for the network N1, then the overall joint pmf is identical,

except for the last line replaced by

n
∏

i=1

q1(y
il
(i−1)l+1|x

il
(i−1)l+1)

:=

l
∏

j=1

n
∏

i=1

q1(y(i−1)l+j |x(i−1)l+j).

We denote this (target) probability law by Q1. Since the

induced channel simulates the channel q1 in the sense that

dTV

(

p(yil(i−1)l+1|x
il
(i−1)l+1), q1(y

il
(i−1)l+1|x

il
(i−1)l+1)

)

≤
ϵ

n

for every xil
(i−1)l+1 ∈ X l and i ∈ [1 : n], it follows by

the properties of the total variation distance that the marginal

distributions of the induced channel satisfy

dTV

(

p(y(i−1)l+j |x(i−1)l+j), q1(y(i−1)l+j |x(i−1)l+j)
)

≤
ϵ

n

for every x(i−1)l+j ∈ X , j ∈ [1 : l], and i ∈ [1 : n], and

consequently, their product (across horizontal time indices)

satisfies

dTV

(

p(yn(j)|xn(j)), q1(y
n(j)|xn(j))

)

≤ ϵ (16)

for every xn(j) ∈ Xn and j ∈ [1 : l].
We are now ready to bound the average bit error probability

of the (2nlR, nl) code for the DMN N2, namely,

P
(n)
e,bit(N2) =

1

l

l
∑

j=1

1

nR

nR
∑

ν=1

P{Ŝν(j) ̸= Sν(j)}.

We show that P{Ŝν(j) ̸= Sν(j)} ≤ 2ϵ for every ν and j. By

the definition of total variation distance, we have

P{Ŝν(j) ̸= Sν(j)}

≤ Q{Ŝν(j) ̸= Sν(j)}+ dTV(P,Q1 | Ŝν(j), Sν(j)),

where the second term denotes the total variation distance

between the two marginal distributions of (Ŝν(j), Sν(j)). The

first term can be upper bounded by ϵ from our assumption on

the (2nR, n) code (f, g) for N1 (i.e., under Q1) with average

block (and consequently bit) error probability ≤ ϵ. The second

term can be upper bounded by the total variation distance

dTV(P,Q1) between the distributions on all the random vari-

ables for the j-th code component, namely, SnR(j), ŜnR(j),
Xn

∗ (j), Y
n
∗ (j), Xn(j), and Y n(j). The two distributions are

identical except for p(yn(j)|xn(j)) and q1(y
n(j)|xn(j)) and

their distance is upper bounded by ϵ due to (16). To see this,

let Z = (SnR(j), ŜnR(j), Xn
∗ (j), Y

n
∗ (j)), X = Xn(j), and

Y = Y n(j), and note that

dTV(P,Q1) = dTV

(

p(z,x,y), q1(z,x,y)
)

=
∑

z,x

p(z,x|y)dTV

(

p(y|x), q1(y|x)
)

≤ ϵ
∑

z,x

p(z,x|y)

≤ ϵ,

regardless of the specific factorization structure of p(z,x|y).
This completes the proof of Theorem 2.

Remark 2: We can obtain an alternative proof by using

strong channel simulation and following essentially identical

steps to the current proof. Bounding the total variation dis-

tances, however, is less transparent in that approach.
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