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Abstract—We extend the composite coding (CC) scheme for
the index coding problem from two layers to more layers
of random binning. We explicitly introduce the three-layer
composite coding (TLCC) scheme and provide the achievable
rate region and the error analysis for it. We present a concrete
non-trivial example with n = 7 messages where the TLCC
strictly outperforms the CC scheme. We also present a number
of simplification methods for the TLCC scheme towards better
understanding of the scheme, as well as significantly reducing
its computational complexity. We further prove that even a
simplified version of the TLCC, which can be possibly weaker
than the TLCC, still subsumes the CC scheme.

I. INTRODUCTION

Introduced by Birk and Kol in [1], the index coding
problem investigates the optimal broadcast rate of n messages
from a server to multiple receivers via a noiseless finite-
capacity channel. Each receiver wants to decode a unique
message and has prior knowledge of some other messages.
A fundamental goal in index coding is characterizing its
full capacity region, which is still an open problem. Various
index coding schemes have been developed, which establish
inner bounds on the capacity region (or lower bounds on
the symmetric capacity) of the index coding problem. The
author in [2] showed that linear index coding is optimal for
all problems with n ≤ 5 messages. Nevertheless, none of the
existing schemes is generally optimal. See [2], [3] and the
references therein for structured index coding schemes.

The classic random coding method by Shannon still plays
a central role in many network information theory problems.
Composite coding or CC, first introduced in [4] and later
enhanced in [5], is an index coding scheme built upon random
flat coding. Flat coding is a single-layer random coding
scheme where for each message tuple a codeword is generated
via random binning. Composite coding is a two-layer random
coding scheme, which first generates an index of certain rate
for each message subset via random binning and then maps
all the indices to a codeword, again via random binning.
Composite coding strictly outperforms flat coding and gives
tight inner bounds on the capacity region for all index coding
problems with n ≤ 5 messages, as well as many larger
problems with more messages. However, composite coding
is in general suboptimal.

A method is proposed in [6] to address this issue by
combining structured coding and random coding. However,
the structured part of the encoder seems problem-dependent
and may involve custom design. A question that arises is
whether one can design a general-purpose purely random
coding scheme by adding more layers into the CC scheme,
such that it strictly outperforms the CC scheme.

In this paper we show that adding more layers to composite
coding is possible and indeed beneficial. For ease of exposi-
tion and computations, we focus on a three-layer composite
coding or the TLCC scheme. Section IV describes the code-
book generation and the encoding and decoding operations for
the TLCC scheme. We characterize the achievable rate region
for the TLCC scheme and present the corresponding error
analysis. Next in Section V, we present a series of simplifi-
cation techniques for reducing the computational complexity
of the TLCC. We prove that even with some simplifications
the TLCC gives a rate region that is no smaller than that given
by the CC. A concrete example is provided to show that the
TLCC scheme can be strictly superior to the CC scheme.

II. SYSTEM MODEL

Consider the index coding problem with n messages,
xi ∈ {0, 1}ti , i ∈ [n]

.
= {1, 2, . . . , n}. For brevity, when we

say message i, we mean message xi. Let Xi be the random
variable corresponding to xi. We assume that X1, . . . , Xn are
uniformly distributed and independent of each other. For any
K ⊆ [n], set Kc .= [n]\K, and we use the shorthand notation
xK to denote the collection of messages whose index is in K,
and 2K to denote the collection of all non-empty subsets of
K. In particular, set N .

= 2[n]. By convention x∅ = 2∅ = ∅.
There is a single server that contains all messages x[n] and

is connected to all receivers via a noiseless broadcast link
of normalized capacity C = 1. Let y be the output of the
server, which is a function of x[n]. There are n receivers,
where receiver i ∈ [n] wishes to obtain xi and knows xAi as
side information for some Ai ⊆ [n] \ {i}.

We define a (t, r) = ((ti, i ∈ [n]), r) index code by
• An encoder φ :

∏
i∈[n]{0, 1}ti → {0, 1}r, which maps

the messages x[n] to an r-bit sequence y, and
• n decoders, one for each receiver i ∈ [n], such that ψi :
{0, 1}r ×

∏
k∈Ai
{0, 1}tk → {0, 1}ti maps the received

sequence y and the side information xAi
to x̂i.

We say that a rate tuple R = (Ri, i ∈ [n]) is achievable if
for every ε > 0, there exist a (t, r) index code such that

Ri ≤
ti
r
, i ∈ [n], (1)

and the probability of error satisfies

P{(X̂1, . . . , X̂n) 6= (X1, . . . , Xn)} ≤ ε. (2)

The capacity region C of this index coding problem is
the closure of the set of all achievable rate tuples R. The
symmetric capacity is defined as

Csym = max{Rsym : (Rsym, · · · , Rsym) ∈ C }. (3)
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We will compactly represent an index coding instance by
a sequence (i|j ∈ Ai), i ∈ [n]. For example, for A1 = ∅,
A2 = {3}, and A3 = {2}, we write (1|−), (2|3), (3|2).

III. REVIEW OF FLAT CODING AND COMPOSITE CODING

Let r ∈ N and ti = drRie, i ∈ [n], where Ri is
the rate of message i. Flat coding is a single-layer random
coding scheme for index coding. For each realization of
messages x[n] a codeword y(x[n]) is drawn uniformly at
random from [2r]. The codebook is revealed to all parties.
To communicate messages x[n], the server transmits y(x[n]).
Since the encoding is flat, receiver i must decode all messages
it does not know and then discard the unwanted or interfering
messages xBi

to obtain xi, where Bi = (Ai ∪ {i})c. The
achievable rate region of flat coding is

Ri +
∑
j∈Bi

Rj < 1, i ∈ [n]. (4)

For the problem (1|4), (2|3, 4), (3|1, 2), (4|2, 3), flat coding
for the original problem or time-sharing of flat coding over
subproblems gives a suboptimal rate region as R1+R2+R3 <
1, R1+R4 < 1, and R3+R4 < 1. However, using a two-layer
CC scheme, described below, R1 + R2 < 1, R1 + R3 < 1,
R1 +R4 < 1, and R3 +R4 < 1 is achievable.

Let sK = drSKe, K ⊆ [n], where SK is the rate of
composite index K (to be defined shortly). We review the
original version of the CC scheme [4], in which each receiver
uses a fixed decoding configuration.

Codebook generation. Step 1. For each K ⊆ [n], generate
a composite index wK(xK) uniformly at random from [2sK ].
Step 2. Generate the codeword y(wK ,K ⊆ [n]) uniformly at
random from [2r]. Reveal the codebook to all parties.

Encoding. To communicate messages x[n], the server
transmits y(wK(xK),K ⊆ [n]).

Receiver i decodes for a subset of messages indexed by
Di ⊆ [n] \ Ai, such that i ∈ Di. The tuple of decoding
message sets is denoted by D = (Di, i ∈ [n]) and referred
to as the decoding configuration for composite coding.

Decoding. Step 1. Receiver i finds the unique composite
index tuple (ŵK ,K ⊆ [n]) such that y = y(ŵK ,K ⊆ [n]).
If there is more than one such tuple it declares an error.
Step 2. Assuming (ŵK ,K ⊆ [n]) is correct, receiver i finds
the unique message tuple x̂Di

such that ŵK = wK(x̂K) for
all K ⊆ Di ∪ Ai. If there is more than one such tuple it
declares an error.

The achievable rate region of this coding scheme [4], which
will be referred to as the original CC or just the CC later, is
summarized below. The proof can be found in [3], [7].

Proposition 1: A rate tuple R is achievable for the index
coding problem (i|Ai), i ∈ [n], under a given D if∑
K⊆[n],K*Ai

SK < 1, ∀i ∈ [n], (5)

∑
j∈L

Rj <
∑

K⊆Di∪Ai,
K∩L6=∅

SK , ∀L ⊆ Di, i ∈ [n], (6)

for some SK ≥ 0, K ⊆ [n].

To compute an explicit achievable rate or rate region from
(5) and (6), one has to eliminate the intermediate variables
(SK ,K ⊆ [n]) using an optimization tool.

Due to space limitations, the more general enhanced com-
posite coding [5], or enhanced CC, will not be presented here,
but will be used for our numerical analysis. Enhancement is
due to better convexification of message rates and composite
index rates over different decoding configurations.

As shown by the following example, even the best com-
posite coding, namely, time sharing of enhanced CC over all
possible subproblems (including the problem itself), is not
optimal in general.

Example 1: Consider the achievable symmetric rate
Rsym = Ri,∀i ∈ [7] for the 7-message problem(1|5),
(2|3, 5, 6), (3|4, 6, 7), (4|1, 2, 7), (5|2, 3, 4, 7), (6|3, 4, 7),
(7|1, 2, 4). Time sharing of enhanced CC over subproblems
gives Rsym < 1

3.25 . However, by simple linear encoding
scheme such as sending three codewords, x1⊕x5, x2⊕x4⊕
x5⊕x7, and x3⊕x4⊕x6⊕x7, a symmetric rate of Rsym = 1

3
can be achieved for the problem, which indeed reaches the
symmetric capacity.

Simplifications: In Algorithm 1 we repeat a recent result
from [8], which can greatly reduce the number of decoding
configurations to consider in the CC scheme without any
performance loss in achievable rates. Only supersets of D
(i.e., Di ⊇ Di for all i ∈ [n]) need to be considered.

In [8] we also proposed another way of complexity reduc-
tion by removing composite index rate variables, SK that are
guaranteed to be dominated by other variables SK′ . We will
use a similar idea later in Section V for reducing the number
of doubly composite index rate variables in the TLCC.

Algorithm 1: Natural decoding configuration
Input : Index coding problem (i|Ai), i ∈ [n].
Output: Natural decoding configuration

D = (Di, i ∈ [n]).
1 Initialize Di = {i}, i ∈ [n].
2 As long as there exists i, j ∈ [n] such that Aj ⊆ Ai ∪Di

and Dj 6⊆ Ai ∪Di, update Di ← Di ∪ (Dj \Ai). If no
such i, j exist, terminate the algorithm.

IV. THREE-LAYER COMPOSITE CODING

In this section, we present the main result of this paper, the
three-layer composite coding scheme and its corresponding
achievable rate region. Due to the space limitations, we only
present results for a fixed decoding configuration. Extension
to enhanced three-layer composite coding is straightforward.

Codebook generation. Step 1. For each K ⊆ [n], generate
a composite index wK(xK) drawn uniformly at random from
[2sK ]. Step 2. For each M ⊆ N , generate a doubly composite
index vM (wK ,K ∈ M) drawn uniformly at random from
[2zM ], where zM = drZMe and ZM is the rate for the
doubly composite index vM . Step 3. Generate the codeword
y(vM ,M ⊆ N) drawn uniformly at random from [2r]. The
codebook {(wK(xK),K ⊆ [n]), (vM (wK ,K ∈ M),M ⊆
N), y(vM ,M ⊆ N)} is revealed to all parties.
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For brevity, when we say (composite) index K and (doubly
composite) index M , we mean composite index wK(xK) and
doubly composite index vM (wK ,K ∈M).

Encoding. To communicate messages x[n], the server
transmits y(vM (wK(xK),K ∈M),M ⊆ N).

Receiver i decodes for a subset of messages indexed by
Di ⊆ [n] \ Ai, such that i ∈ Di as well as a subset of
composite indices indexed by Pi ⊆ N \ 2Ai . The tuple of
decoding message sets and decoding (composite) index sets
is denoted by (D,P) = ((Di, i ∈ [n]), (Pi, i ∈ [n])) and
referred to as the decoding configuration for the TLCC.

Decoding. Step 1. Receiver i finds the unique doubly com-
posite index tuple (v̂M ,M ⊆ N) such that y = y(v̂M ,M ⊆
N). If there is more than one such tuple, it declares an error.
Step 2. Assuming that (v̂M ,M ⊆ N) is correct, receiver i
finds the unique composite index tuple (ŵK ,K ∈ Pi) such
that v̂M = vM (ŵK ,K ∈ M) for every M ⊆ 2Ai ∪ Pi. If
there is more than one such tuple, it declares an error. Step
3. Assuming that (ŵK ,K ∈ Pi) is correct, receiver i finds
the unique message tuple x̂Di

such that ŵK = wK(x̂K) for
every K ⊆ Di ∪Ai,K ∈ Pi. If there is more than one such
tuple, it declares an error.

We have the following theorem.
Theorem 1: A rate tuple R is achievable for the index

coding problem (i|Ai), i ∈ [n], under a given (D,P) if

∑
M⊆N,M*2Ai

ZM < 1, ∀i ∈ [n], (7)

∑
K∈Q

SK <
∑

M⊆2Ai∪Pi,
M∩Q6=∅

ZM , ∀Q ⊆ Pi, i ∈ [n], (8)

∑
j∈L

Rj <
∑

K⊆Di∪Ai,
K∩L6=∅,
K∈Pi

SK , ∀L ⊆ Di, i ∈ [n], (9)

for some ZM ≥ 0,M ⊆ N and SK ≥ 0,K ⊆ [n].
The proof for Theorem 1 is presented in Appendix A. The

inequalities in (7), (8), and (9) signify the first-step, second-
step, and third-step decoding constraints for the TLCC. It can
be shown that for the TLCC, D found in Algorithm 1 still
servers as the baseline or natural decoding message set, such
that it suffices to only consider the supersets of D.

It will be shown later in the paper that the TLCC scheme
subsumes the CC scheme in general. For some problems, it
can give strictly better results.

Example 2: Consider the problem in Example 1. While
time sharing of enhanced CC over subproblems gives Rsym <
1

3.25 , according to Theorem 1, any Rsym < 1
3 is achievable

as follows. Set (D,P) such that Di = {i}, ∀i ∈ [n],
and P1 = {{1}}, P2 = {{2}, {4, 7}}, P5 = {{5}}, P3 =
P6 = {{3, 6}}, P4 = P7 = {{5}, {4, 7}}. Then set
ZM = 0, ∀M ⊆ N except for Z{{1},{5}}, Z{{2},{4,7},{5}}
and Z{{3,6},{4,7}}. Also set SK = 0, ∀K ⊆ [n] except for
S{1}, S{2}, S{5}, S{3,6}, and S{4,7}. Writing all the active

decoding inequalities of Theorem 1 yields

Z{{1},{5}}+Z{{2},{4,7},{5}} + Z{{3,6},{4,7}} < 1,

S{1} < Z{{1},{5}},

S{2} + S{4,7} < Z{{2},{4,7},{5}} + Z{{3,6},{4,7}},

S{2} < Z{{2},{4,7},{5}},

S{3,6} < Z{{3,6},{4,7}},

S{5} + S{4,7} < Z{{1},{5}} + Z{{2},{4,7},{5}},

S{4,7} < Z{{2},{4,7},{5}},

S{5} < Z{{2},{4,7},{5}},

Rsym < SK ,∀K ∈ {{1}, {2}, {5}, {3, 6}, {4, 7}}.
For an arbitrary ε ∈ (0, 13 ], assigning Rsym = 1

3 − ε, S{1} =
S{2} = S{5} = S{3,6} = S{4,7} = 1

3 −
ε
2 , Z{{1},{5}} =

Z{{2},{4,7},{5}} = Z{{3,6},{4,7}} = 1
3 −

ε
4 satisfies all the

inequalities. Hence any Rsym < 1
3 is achievable by the TLCC.

V. SIMPLIFICATIONS FOR THE TLCC
The main challenges for the TLCC’s computation are the

overwhelming number of ZM variables, which is 22
n−1 − 1,

as well as the choice of P. To circumvent these, we now
present a series of simplifications.

A. Limiting the Choice of P
First, we propose a heuristic baseline decoding index set

PD for a given D. The idea of the heuristic is as follows.
For a given Di, the starting set Pi for receiver i contains
all subsets of [n] that intersect with Di and do not intersect
with interfering messages (Ai∪Di)

c. Then, following similar
lines of thought as in Algorithm 1, we iteratively add missing
elements from Pj to Pi if 2Aj ⊆ 2Ai ∪PD

i and PD
j 6⊆ 2Ai ∪

PD
i . This is summarized in Algorithm 2, which makes use of

the following notation. For any message subsets K,L ⊆ [n]:

TK,L = {J ∈ N : J ∩K 6= ∅, J ∩ L = ∅}.
After running Algorithm 2, one can only consider the

supersets of PD in the second-step decoding, which can
lead to great reduction in the number of possible decoding
configurations, albeit with possible performance loss.

For any collection of composite indices M ⊆ N , we set

Γ∗(M) =
⋃
K∈M

{L ∈ N : L ⊆ K} =
⋃
K∈M

2K

to be the subset completion of M . Note 2K = Γ∗({K}). The
set M ⊆ N is subset-complete if M = Γ∗(M).

For any P, if 2Ai ∪ Pi is subset-complete for any i ∈ [n],
we simply say that P is subset-complete. Then we have the
following lemma.

Lemma 1: For any D, its corresponding PD given by
Algorithm 2 is subset-complete.

Proof: For any i ∈ [n], consider the initial set PD
i =

T
Di,(Ai∪Di)c

. As 2Ai ∪ PD
i = 2Ai∪Di , we have Γ∗(2

Ai ∪
PD
i ) = Γ∗(2

Ai∪Di) = 2Ai∪Di = 2Ai ∪ PD
i . Since the union

of any two subset-complete sets is also subset-complete, for
the final PD

i , 2Ai ∪PD
i must be subset-complete as well.

For a given D, despite possible performance loss, we may
further narrow down the range of P to consider by enforcing
that P is a superset of PD such that P is subset-complete.
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B. Reducing Doubly Composite Indices

In the following proposition, we adopt and modify the com-
posite index rate transfer and removal technique proposed in
[8, Theorem 1] to doubly composite index rates ZM ,M ⊆ N .

Proposition 2: For a given decoding configuration and ar-
bitrary M,M ′ ⊆ N,M 6= M ′, compare the relative presence
for ZM , ZM ′ in the inequalities identified by Theorem 1.

1) If ZM ′ appears in any first-step decoding inequality
then so does ZM , AND

2) If ZM appears in any second-step decoding inequality
then so does ZM ′ ,

then ZM can be removed from the rate expressions without
affecting the resulting rate region.

The proof is similar to that in [8] for removing SK rates.
The number of ZM variables remaining after applying the

above proposition to every M,M ′ pairs can be much smaller
than its original value 22

n−1 − 1. This leads to considerably
lower complexity in computation. However, as the original
number of ZM variables is extremely large for large n, even
the computational complexity for applying Proposition 2 for
every possible M,M ′ can be a problem. Hence, we propose
to systematically exclude some ZM variables even before
applying Proposition 2. This can be done if P is subset-
complete, such as PD at the output of Algorithm 2.

Corollary 1: For any decoding configuration (D,P) such
that P is subset-complete, it suffices to only consider ZM
such that M is subset-complete.

Proof: Consider an arbitrary M ⊆ N such that M 6=
Γ∗(M), set M ′ = Γ∗(M). M ′ is subset-complete and M ⊂
M ′. Since

⋃
K∈M K =

⋃
K∈M ′ K, whenever ZM appears

in a first-step decoding inequality in (7), so does ZM ′ and
vice versa. Consider the relative presence for ZM , ZM ′ in
the second-stage inequalities. For any i ∈ [n], since 2Ai ∪Pi
is subset-complete, if M ⊆ 2Ai ∪ Pi, we must have M ′ ⊆
2Ai ∪ Pi. Also, as M ⊂M ′, if M ∩ L 6= ∅ for any L ⊆ Di,
we must have M ′∩L 6= ∅. Therefore, whenever ZM appears
in a second-step decoding inequality in (8) so does ZM ′ .
According to Proposition 2 any such ZM can be removed.

C. Reducing Doubly Composite Indices Based on Already
Reduced Composite Indices

For a given problem and decoding message set D, use
NK(D) and N ′K(D) to denote the collection of K such that
SK remains after applying [8, Theorem 1] or [8, Algorithm
1], which remove some SK variables from the expressions
of the rate region (5)-(6) of the CC scheme. The difference
is that [8, Theorem 1] is guaranteed not to reduce the CC
achievable rate region, whereas [8, Algorithm 1] is a possibly
suboptimal heuristic. When the context is clear, we simply use
the shorthand notation NK and N ′K. Note that N ′K ⊆ NK ⊆
N . For the 7-message problem in Examples 1 and 2, setting
D to be D and applying [8, Theorem 1] or [8, Algorithm 1],
we find |NK| = 16 and |N ′K| = 7, respectively. Note that the
original number of SK variables is 27 − 1 = 127.

For the TLCC, one can remove any composite index
wK ,K 6∈ NK or K 6∈ N ′K from the coding scheme. Since
doubly composite indices vM are generated from composite

Algorithm 2: Heuristic baseline decoding index set.
Input : Index coding problem (i|Ai), i ∈ [n], and

decoding message set D = (Di, i ∈ [n])
Output: Heuristic baseline decoding index set

PD = (PD
i , i ∈ [n]).

1 Initialize PD
i = T

Di,(Ai∪Di)c
, i ∈ [n].

2 If there exists i, j ∈ [n] such that 2Aj ⊆ 2Ai ∪ PD
i and

PD
j 6⊆ 2Ai ∪ PD

i , update PD
i ← PD

i ∪ (PD
j \ 2Ai). If

no such i, j exist, terminate the algorithm.

indices wK , this will naturally narrow down the range of vM
from M ⊆ N to M ⊆ NK or M ⊆ N ′K, which can lead
to a huge reduction in the number of ZM variables from
2|N | − 1 = 22

n−1 − 1 to 2|NK| − 1 or 2|N
′
K| − 1. Note that

such reduction may lead to performance loss.
The simplification techniques are summarized in Table I.

D. Simplified TLCC Subsumes Composite Coding

In this subsection, we prove that even with some of
the simplifications discussed so far, the TLCC scheme is
guaranteed to perform at least as well as the original CC.

Consider an arbitrary index coding problem and an ar-
bitrary D that is a superset of D, let RCC(D) denote the
achievable rate region of the CC with D.

With slight abuse of notation, for any K ∈ NK and
M ⊆ NK, let 2K denote the collection of subsets of K with
respect to NK, 2K = {L ∈ NK : L ⊆ K}, and let Γ∗(M)
denote the subset completion of M with respect to NK,
Γ∗(M) =

⋃
K∈M{L ∈ NK : L ⊆ K} =

⋃
K∈M 2K . Also,

set TK,L = {J ∈ NK : J∩K 6= ∅, J∩L = ∅}, and hence the
baseline decoding index set PD = (PD

i , i ∈ [n]) given by
Algorithm 2 is within the range of NK. Let RTLCC(D,P)
denote the achievable rate region of the TLCC with decoding
configuration (D,P) with the following simplifications:

1) any SK ,K 6∈ NK and ZM ,M 6⊆ NK are removed from
the decoding inequalities (7)-(9), and

2) P = (Pi, i ∈ [n]) is a decoding index set such that for
any i ∈ [n], PD

i ⊆ Pi ⊆ NK \ 2Ai and that 2Ai ∪Pi is
subset-complete with respect to NK.

Proposition 3: RCC(D) ⊆ RTLCC(D,P).
Proof: Let R ∈ RCC(D) be an achievable rate tuple of

the CC. According to [8], removing any SK that K 6∈ NK
does not affect the achievable rate region of the CC, hence
there exists some (SK ,K ∈ NK) such that R and (SK ,K ∈
NK) satisfy (5) and (6) with D. Set ZM ,M ⊆ NK as

ZM =

{
SK , if M = 2K for some K ∈ NK,
0, otherwise.

Now we show that R, (SK ,K ∈ NK) and (ZM ,M ⊆ NK)
satisfy the decoding inequalities of the TLCC, (7)-(9), with
(D,P) defined above.

First, for any i ∈ [n], we have
∑
M⊆NK:M 6⊆2Ai ZM =∑

2K⊆NK:2K 6⊆2Ai Z2K =
∑
K∈NK:K 6⊆Ai

SK < 1.
Second, for any Q ⊆ Pi, i ∈ [n], as 2Ai ∪ Pi is subset-

complete with respect to NK, we know that for any K ∈ Q,
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K ∈ 2Ai ∪ Pi and thus 2K = Γ∗(K) ⊆ 2Ai ∪ Pi. Also, for
any K ∈ Q, 2K ∩Q 6= ∅. Hence, we have∑

M⊆NK:

M⊆2Ai∪Pi

M∩Q6=∅

ZM =
∑

2K⊆NK:

2K⊆2Ai∪Pi

2K∩Q6=∅

Z2K ≥
∑

K∈NK:
K∈Q

SK . (10)

Third, for any L ⊆ Di, i ∈ [n], note that T
L,(Ai∪Di)c

⊆
T
Di,(Ai∪Di)c

⊆ PD
i ⊆ Pi. Therefore, if K ∈ NK, K ⊆

Ai ∪Di and K ∩ L 6= ∅ then K must be in set Pi. Hence,∑
j∈L

Rj <
∑

K∈NK:K⊆Ai∪Di,K∩L6=∅

SK (11)

=
∑

K∈NK:K⊆Ai∪Di,K∩L6=∅,K∈Pi

SK . (12)

We have proven that R and (SK ,K ∈ NK) and (ZM ,M ⊆
NK) satisfy (7)-(9) with (D,P), which means that R ∈
RTLCC(D,P). In summary, RCC(D) ⊆ RTLCC(D,P).

RTLCC(D,P) can be strictly larger than RCC(D).
RTLCC(D,P) can even strictly outperform the best com-
posite coding for some cases, as shown below.

Consider Example 2 again. Time sharing of enhanced CC
over subproblems gives Rsym < 1

3.25 . For the TLCC, we
apply the following simplifications. Fix D to be D. Apply
[8, Theorem 1] to obtain NK, where |NK| = 16. Remove
any SK ,K /∈ NK and ZM ,M 6⊆ NK. Thus the number of
ZM variables is hugely reduced from 2127 − 1 to 216 − 1.
Find the output of Algorithm 2, PD and set P as Pi =
P

D
i ,∀i ∈ {1, 3, 5, 6}, P2 = P

D
2 ∪ (2{4,7} ∩ NK) and Pi =

P
D
i ∪ (2{5} ∩NK),∀i ∈ {4, 7}. Use Proposition 2 to further

remove unnecessary ZM variables. Applying Theorem 1 we
obtain the optimal Rsym < 1

3 . Moreover, Rsym < 1
3 can

be obtained with even much lower computational complexity
via using N ′K from [8, Algorithm 1], instead of NK, for the
entire simplifying process, where |N ′K| = 7. Thus the number
of ZM variables is only 27 − 1. We can simply set P = PD

(which is now within the range of N ′K). Applying Proposition
2, the final number of remaining ZM variables is merely 6.

Table I
SIMPLIFICATION TECHNIQUES AND WHETHER THEY RETAIN OPTIMALITY

Simplification References Optimality

Limiting D to be supersets of D Alg. 1, [8, Thm. 2] Yes

Limiting P to be supersets of
PD such that P is

subset-complete
Alg. 2, Lem. 1 Unknown

Removing Z variables by
pairwise comparison Prop. 2 Yes

Removing ZM ,M 6= Γ∗(M)
when P is subset-complete Cor. 1 Yes

Removing SK and ZM not
fully embedded in NK or N ′K

Sec. V-C, [8, Thm.
1, Alg. 1] Unknown

It remains to compare the TLCC with other coding schemes
in future works, especially the structured coding schemes
such as those proposed in [9], [10]. Another fascinating

direction is to see whether the achievable rate region of
such layered random coding scheme approaches the capacity
region in general as the number of layers increases, and if
not, to identify any fundamental gaps between them.

APPENDIX A
PROOF OF THEOREM 1

We only present the error analysis for the second-step
decoding of the TLCC, as the analysis for other steps is
quite similar to that of the CC scheme. Assume that the
doubly composite indices (v̂M ,M ⊆ N) have been correctly
decoded. For receiver i, we partition the error event according
to the collection Q ⊆ Pi for erroneous composite indices.
That is, ŵK 6= wK iff K ∈ Q. Hence, for the second-step
decoding error probability Pe, we have

Pe =P{v̂M = vM (ŵK ,K ∈M) for all M ⊆ 2Ai ∪ Pi
for some ŵK 6= wK ,K ∈ Pi} (13)

≤
∑
Q⊆Pi

∑
(ŵK ,K∈Pi):
ŵK 6=wK ,K∈Q
ŵK=wK ,K 6∈Q

P{
⋂

M⊆2Ai∪Pi

M∩Q6=∅

{ v̂M=
vM (ŵK ,K∈M)}} (14)

<
∑
Q⊆Pi

2
∑

K∈Q sK/2
∑

M∈M zM (15)

<
∑
Q⊆Pi

2r(
∑

K∈Q SK−
∑

M∈M ZM )+
∑

K∈Q , (16)

where M = {M ⊆ N : M ⊆ 2Ai ∪ Pi,M ∩ Q 6= ∅}, and
the first inequality is due to the union bound, and the second
inequality holds since for each Q, the number of erroneous
tuples is

∏
K∈Q(2sK − 1) ≤ 2

∑
K∈Q sK , and the probability

for any two distinct composite index tuples being mapped
to the same doubly composite index vM for all M ∈ M is
2−

∑
M∈M zM . Pe tends to zero as r →∞ if (8) is satisfied.
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