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Abstract—We consider the problem of distributed source
simulation with no communication, in which Alice and Bob
observe sequences Un and V n respectively, drawn from a joint
distribution p⊗n

UV , and wish to locally generate sequences Xn

and Y n respectively with a joint distribution that is close (in
KL divergence) to p⊗n

XY . We provide a single-letter condition
under which such a simulation is asymptotically possible with a
vanishing KL divergence. Our condition is nontrivial only in the
case where the Gàcs-Körner (GK) common information between
U and V is nonzero, and we conjecture that only scalar Markov
chains X − U − V − Y can be simulated otherwise. Motivated
by this conjecture, we further examine the case where both pUV

and pXY are doubly symmetric binary sources with parameters
p, q ≤ 1/2 respectively. While it is trivial that in this case p ≤ q
is both necessary and sufficient, we show that when p is close to
q then any successful simulation is close to being scalar in the
total variation sense.

I. INTRODUCTION AND MAIN RESULTS

Let us consider the following distributed simulation prob-
lem. Assume that (Un, V n) are drawn by nature according
to some i.i.d distribution pUV . Alice has access to Un and
she outputs some sequence Xn, while Bob has access to V n

and he outputs some sequence Y n, such that (Xn, Y n) are
approximately distributed according to some i.i.d distribution
pXY . There is no communication between the parties nor do
they share any common randomness. Our goal is to character-
ize the set of distributions pXY that can be reliably simulated
using this scheme. To make this more formal, Let pUV be
some joint discrete distribution, and let (Un, V n) ∼ p⊗nUV . We
say that a joint distribution pXY is (n, ε)-simulable from pUV ,
if there exist conditional probability distributions pXn|Un and
pY n|V n such that the distribution

pXnY n(xn, yn)

=
∑
un,vn

p⊗nUV (u
n, vn)pXn|Un(xn|un)pY n|V n(yn|vn)

is ε-close in relative entropy to p⊗nXY , i.e.,

D
(
pXnY n‖p⊗nXY

)
≤ ε.

We say that pXY is simulable from pUV if it is (n, ε)-simulable
from pUV for every ε > 0 and n sufficiently large.

For U = V , our question was already answered by Wyner:

Theorem 1 ( [1]). If H(U) ≥ CW(X;Y ), where

CW(X;Y )
def
= min

W :X−W−Y
I(X,Y ;W )

then pXY is simulable from pU .

CW(X;Y ) is the so-called Wyner common information,
defined as the minimum common randomness that needed

for Alice and Bob to be able to locally create Xn and
Y n respectively, where pXn,Y n is arbitrarily close (in KL
divergence) to p⊗nXY , in the limit of large n. Note that this
solution is "digital", in the sense that it uses codebooks. One
naive approach that comes to mind is a reduction to Wyner’s
setup, by generating a “common part” f(U) = g(V ) from
U 6= V . This corresponds to using the so-called Gàcs-Körner
(GK) common information [2], which is defined as

CGK(U ;V )
def
= max

f,g: Pr(f(U)=g(V ))=1
H(f(U)).

CGK(U ;V ) is the maximum amount of randomness that can
be agreed upon by two separate agents, Alice and Bob,
observing U or V respectively. The (unique) random variable
K = f(U) = g(V ) that attains the maximum above is called
the GK common part of (U, V ). It is well known that if
(Un, V n) ∼ p⊗nUV , then CGK(U

n;V n) = nCGK(U ;V ). In
other words, the GK common part of (Un, V n) is simply
the vector of scalar common parts pertaining to each (Ui, Vi).
Moreover, this tensorization is asymptotically valid even if a
vanishing error is allowed [2].

Combining the two results, Alice and Bob can both extract
the GK common part Kn from Un and V n respectively,
and use Wyner coding, which leads to the following simple
solution:

Proposition 1 (digital solution). If H(K) = CGK(U ;V ) ≥
CW(X;Y ), then pXY is simulable from pUV .

This digital approach is viable only when CGK(U ;V ) > 0.
There is an even simpler analog approach that does not use
common information – Alice and Bob pass their corresponding
sequences through memoryless channels pXn|Un = p⊗nX|U and
pY n|V n = p⊗nY |V , respectively, symbol-by-symbol.

Proposition 2 (analog solution). If X − U − V − Y form a
Markov chain, then pXY is simulable from pUV .

The first contribution of this work is the following charac-
terization of a generally larger set of simulable distributions,
which we prove in Section III.

Theorem 2. Let K be the GK common part of (U, V ). Suppose

W −K − (U, V ) (1)
X − (U,W )− (V,W )− Y (2)

are Markov chains, and

CGK(U ;V ) ≥ I(X,Y ;K,W ).

Then pXY is simulable from pUV .
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We note that the theorem easily implies both analog and
digital approaches. For the analog approach, choose W to
be independent of (U, V,X, Y ). The Markov chain (1) is
satisfied and also I(X,Y ;K,W ) = I(X,Y ;K) ≤ H(K) =
CGK(U ;V ) holds. The only additional condition is the Markov
chain (2), which in this case reduces to X − U − V − Y . A
proper choice of W also implies the digital solution.

Let Sdig(pUV ), Sana(pUV ), and S(pUV ) denote the col-
lections all pXY simulable from pUV via a digital scheme
(Proposition 1), an analog scheme (Proposition 2) and a hybrid
scheme (Theorem 2), respectively. The following proposition
shows that the statement of Theorem 2 is not trivial.

Proposition 3. Sdig(pUV ) ∪ Sana(pUV ) ⊆ S(pUV ), and the
inclusion is strict for some pUV . Moreover, S(pUV ) is strictly
larger than Sana(pUV ) if and only if CGK(U ;V ) > 0.

In Theorem 2, our agents ability to cooperate stems from
having some common information. No common part means no
perfect cooperation, and this motivates us to conjecture that
only analog simulation is possible in such a case.

Conjecture 1. If CGK(U ;V ) = 0 then pXY is simulable from
pUV if and only if there exists a joint distribution pXY UV such
that X − U − V − Y form a Markov chain.

We are currently unable to prove or refute this conjecture.
Note, however, that in some simple restricted cases the
conjecture holds due to other impossibility results. For ex-
ample, if (U, V ) is a DSBS(p) for some p < 1/2 (hence
CGK(U ;V ) = 0) and we are only interested in simulating
DSBS(q), then it is easy to see that q ∈ [p, 1 − p] is both
necessary and sufficient, and can be attained by a scalar
Markov chain. Our next result shows that this is true in a
stronger way; namely, when q is close to p, then not only is
the scalar Markov chain optimal, but it is essentially the only
way to simulate a DSBS(q).

Let σ be a permutation on [n]. With some abuse of notation,
we refer to σ as a coordinate permutation when applied to
any n-vector, i.e., σ(xn) def

= (xσ(1), xσ(2), . . . , xσ(n)). We write
dTV(P,Q) to denote the total variation distance between the
probability distributions P and Q.

Theorem 3. Let (U, V ) and (X,Y ) be DSBS(p) and
DSBS(p + δ) respectively, where 0 ≤ p ≤ p + δ ≤ 1

2 .
Suppose that pXY is (n, ε)-simulable from pUV via pXn|Un

and pY n|V n . Then there exists a coordinate permutation σ and
scalar conditional distributions qXi|Ui

and qYi|Vi
such that

D1 , dTV

(
pσ(Xn)|Un(· | Un) ,

n∏
i=1

qXi|Ui
(·|Ui)

)
→ 0,

D2 , dTV

(
pσ(Y n)|V n(· | V n) ,

n∏
i=1

qYi|Vi
(·|Vi)

)
→ 0,

as n → ∞ in probability, provided that ε, δ = o(1/n).
Conversely, if δ = ω(1/

√
n) or ε = ω(1/

√
n) then no such

guarantee can be made, i.e., it is possible for D1, D2 to be
bounded away from zero in probability as n → ∞ for any
scalar conditional distributions qXi|Ui

and qYi|Vi
.

Loosely speaking, the above result means that if δ and
ε are o(1/n), then the actual mechanism under the hood
of any successful simulation scheme is truly scalar, in the
sense that no statistical experiment can tell it apart from
a scalar one. We note that Theorem 3 is well known in
combinatorics for the case where ε = δ = 0 (see e.g. [3]),
hence our result can be interpreted as a stable version of
that combinatorial fact. Furthermore, our result is close to
being tight; when ε = ω(1/

√
n) or δ = ω(1/

√
n), successful

simulation is possible using vector operations, for example
by using other coordinates as noise. In the following, note
that all skipped/abbreviated proofs are available in an extended
version of the paper [4].

II. RELATED WORK

In their classical paper on common randomness genera-
tion [5], Ahlswede and Körner considered a setup in which
Alice and Bob observe correlated i.i.d. r.v. pairs, and a
noiseless channel with capacity R from Alice to Bob is given.
They defined the so-called CR capacity as the maximum
entropy rate that Alice and Bob can agree upon with prob-
ability approaching one. The case of R = 0 is related to
our problem, but their setup is in some sense weaker since
they only care about generating randomness, and not about
simulating specific distributions. Cuff et al. [6] studied the
joint distributions that can be generated by nodes in a network
under communication constraints in which some of the nodes
actions are randomly selected by nature. The main concern
in the paper is the notion of empirical coordination, which
is the total variation between the joint type of the actions
and some prescribed distribution. Cuff [7], [8] considered
the problem of channel simulation, where an i.i.d sequence
Xn is available to Alice, who can send a rate R quantized
description of Xn to Bob, and rate R0 common randomness
is shared between the parties. He fully characterized the rate
pairs (R,R0) for which Bob can generate Y n such that the
channel from Xn to Y n is arbitrarily close in total variation
to a given memoryless channel. Haddadpour et al. [9] studied
similar problem, but where the channel from Alice to Bob is a
noisy memoryless one, instead of a bit pipe. Ghazi et al. [10]
and De et al. [11] studied the computational-theoretic problem
of deciding whether certain distributions can be simulated
from a given sequence of i.i.d. pairs in a setup similar to ours
(but when the target distributions are more general), and gave
conditions for decidability.

III. PROOFS OF THEOREM 2 AND PROPOSITION 3

The proof of Theorem 2 is based on the following “soft-
covering” lemma.

Lemma 1. Let pXUW be given and Un ∼ p⊗nU . If H(U) >
I(X;U,W ), then there exists a sequence an : Un → Wn,
such that if we draw Xn ∼ p⊗nX|UW (· | Un, an(Un)) then

lim
n→∞

D
(
pXn ‖ p⊗nX

)
= 0.

This lemma was proved by Cuff [7] for a weaker conver-
gence in total variation. However, as noted in [7], an inequality
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from [12] can be used to show that in this case convergence
in total variation also implies convergence in KL divergence.
We note that it is also possible to prove the latter directly.

We proceed to prove Theorem 2. Our construction is based
on hybrid coding in the spirit of [13], [14]. We use the
GK common part as the digital part, and Un (resp. V n)
as the analog part. Alice and Bob both remotely compute
the GK common part Kn of (Un, V n) from their respective
components, and create Wn = a(Kn) using some encoding
a : Kn → Wn. Alice then generates Xn ∼ p⊗nX|UW (· |
Un, a(Kn)) and Bob generates Y n ∼ p⊗nY |VW (· | V n, a(Kn))
using local randomness. This setup is depicted in Figure 1,
which also hints that a good protocol combines both the
common information between U and V and the structure of
the channel between them in the simulation process.

Alice

Un

Xn

Kn Wn

Enc

P⊗nX|U,W

f

Figure 1: Theorem 2 - Hybrid coding

Define Ũn = (Un, V n) and X̃n = (Xn, Y n). Note that we
cannot use Lemma 1 directly on X̃n, Ũn,Wn, since Wn is
generated from Kn and not from the entire Ũn. Instead, we
show that X̃n is generated from Kn and Wn = a(Kn) in a
memoryless fashion via p⊗nX|KW .

pX̃n(x̃
n) =

∑
ũn,kn

p⊗n
ŨK

(ũn, kn)p⊗n
X̃|ŨW

(x̃n|ũn, a(kn))

=
∑
kn

p⊗nK (kn)
∑
ũn

p⊗n
Ũ |K

(ũn|kn)p⊗n
X̃|ŨW

(x̃n|ũn, a(kn))

=
∑
kn

p⊗nK (kn)
∑
ũn

p⊗n
Ũ |KW

(ũn|kn, a(kn))

× p⊗n
X̃|ŨWK

(x̃n|ũn, a(kn), kn)

=
∑
kn

pKn(kn)
∑
ũn

p⊗n
X̃Ũ |K,W

(x̃n, ũn|kn, a(kn))

=
∑
kn

p⊗nK (kn)p⊗n
X̃|KW

(x̃n|kn, a(kn)),

where we have used the fact that Ũ − K − W and
X̃ − (Ũ ,W ) − K are Marokv chains. Applying Lemma 1
with (X,U,W ) ← (X̃,K,W ), we find that if H(K) >
I(X̃;K,W ) = I(X,Y ;K,W ), then there exists encodings
such that the statement of the Theorem holds.

We now proceed to prove Proposition 3. Due to lack of
space, we only show the second claim of the proposition.
Assume first that CGK(U ;V ) = 0. Then clearly W is inde-
pendent of (U, V ) and also independent of (X,Y ). Now fix
any w0 ∈ W , and write

pXY (x, y) = pXY |W (x, y|w0)

=
∑
u,v

pUV (u, v)pXY |UVW (x, y|u, v, w0)

=
∑
u,v

pUV (u, v)pX|UW (x|u,w0)pY |VW (y|v, w0)

Hence, considering the r.v.s (X̃, Ỹ ) generated via

p̃X̃|U (x̃|u)
def
= pX|U,W (x̃|u,w0)

p̃Ỹ |V (ỹ|v)
def
= pY |V,W (ỹ|v, w0),

we have that X̃ − U − V − Ỹ forms a Markov chain, and
also (X̃, Ỹ ) ∼ pXY . Hence, the distributions guaranteed by
the theorem are only scalar Markov in this case.

Now suppose that CGK(U ;V ) = ε > 0, and let us
show that the Theorem covers more than scalar Markov
distributions. Consider the set of simulable distributions gen-
erated by some scalar Markov chain X − U − V − Y .
Each of these distributions can be written in matrix form
as PXY = PX|UPUVP

T
Y |V , hence in particular, recalling

that rank(AB) ≤ min(rank(A), rank(B)), it must hold that
rank(PXY ) ≤ rank(PUV ). Now, appealing to the digital
approach, it suffices to show that there exists a Markov
chain X − W − Y such that rank(PXY ) ≥ rank(PUV ).
To that end, choose W to have support over an alphabet of
cardinality M > rank(PUV ), and let |X | = |Y| =M as well.
The Markov structure implies that PXY = PX|WPWPTY |W .
Since rank(PW ) = M by construction, it suffices to show
one can choose PX|W and PX|W to have full rank, while
keeping I(X,Y ;W ) ≤ I(X;W ) + I(Y ;W ) ≤ ε. This is a
consequence of the fact that mutual information is continuous
w.r.t. the L∞ metric, whereas matrix rank is not (the details
are omitted).

IV. PROOF OF THEOREM 3

We prove the theorem in steps, starting with deterministic
schemes and then moving to randomized schemes. Before we
proceed, we provide some necessary background.

A. Boolean Functions and Fourier Analysis

A Boolean function f : {−1, 1}n → {−1, 1} on the
Hamming cube can be uniquely expressed [15] as

f(un) =
∑
S⊆[n]

f̂Su
S

where uS =
∏
i∈S ui. This is the Fourier expansion of f w.r.t.

the orthonormal basis of parity functions
(
US
)
S⊆[n], and the

real numbers f̂(S) are called the Fourier coefficients of f .
Note that f̂∅ = E[f ] = 2Pr(f = 1) − 1. The Fourier weight
of f at degree k is defined as

W k[f ] =
∑
|S|=k

f̂2S ,

hence
∑n
k=0W

k[f ] =
∑
S⊆[n] f̂

2
S = 1.

Lemma 2. Let (Un, V n) ∼ p⊗nUV where pUV is DSBS(p).
Then

E[f(Un)g(V n)] ≤ 1

2

n∑
k=0

(1− 2p)k(W k[f ] +W k[g]).
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B. Deterministic Schemes with δ = 0

We begin by limiting our discussion to deterministic simu-
lation schemes, i.e., where Xn (resp. Y n) is a deterministic
function of Un (resp. V n).

1) Exact Simulation (ε = 0): Let Xn = f(Un) and Y n =
g(V n) be such that pXnY n = p⊗nXY , where pXY is a DSBS(p).
In particular, Xn (resp. Y n) are uniformly distributed over the
entire Hamming cube, hence it is clear that f and g must be
permutations of the Hamming cube. Thus on the one hand, by
assumption, we have that

pXnY n(xn, yn) = 2−npdH(xn,yn)(1− p)n−dH(xn,yn)

and on the other hand

pXnY n(xn, yn) = Pr (f(Un) = xn, g(V n) = yn)

= 2−npdH(f−1(xn),g−1(yn))(1− p)n−dH(f−1(xn),g−1(yn))

hence it must be that dH(xn, yn) = dH(f(xn), g(yn)) for any
xn, yn ∈ {0, 1}n. Substituting yn = xn in the above, we see
that dH(f(xn), g(xn)) = 0 for any xn. We thus conclude that
f = g must hold. The problem is now reduced to establishing
the following Lemma.

Lemma 3. A bijection f : {0, 1}n → {0, 1}n preserves the
Hamming distance if and only if f is a signed coordinate
permutation.

Proof. As mentioned, this is well known, but we nevertheless
provide a short proof. A signed coordinate permutation is
clearly a bijection that preserves the Hamming distance. To
prove the other direction, assume first that f(0n) = 0n. Then it
must be that f preserves the Hamming weight, and specifically,
it permutes the vectors of weight one, hence it must be a
coordinate permutation. The case where f(0n) is mapped to
any other nonzero vector is similar, with the exception that f
is now a signed coordinate permutation, flipping exactly those
coordinates where f(0n) is one.

2) Almost Exact Simulation (ε > 0): Now we allow the KL
divergence between the simulated distribution and a DSBS(p)
to be at most ε, and show that both the functions f(xn) and
g(yn) will be almost equal to the same signed permutation.

First, we expand the divergence into two nonnegative quan-
tities: one that captures the deviation of the sequence from
being i.i.d., and the other that captures the deviation of the
marginals from pXY . The (straightforward) proof is omitted.

Lemma 4. It holds that

D
(
pXnY n‖p⊗nXY

)
=

n∑
i=1

I
(
Xi, Yi;X

i−1, Y i−1
)

+
n∑
i=1

D (pXiYi‖pXY ) .

Next, we provide a useful lower bound on the KL diver-
gence between the simulation PXnY n and the desired i.i.d.
distribution PnXY , in terms of the expected Hamming distance.

Lemma 5. Let pUV = pXY be DSBS(p). Let Xn = f(Un)
and Y n = g(V n). Then

D
(
pXnY n‖p⊗nXY

)
≥ log

1− p
p
· (E dH(Xn, Y n)− np) .

with equality if and only if both f and g are bijections.

Proof. Write

D
(
pXnY n‖p⊗nXY

)
=
∑
xn,yn

pXnY n(xn, yn) log
pXnY n(xn, yn)

p⊗nXY (x
n, yn)

=
∑
xn,yn

 ∑
un∈f−1(xn),vn∈g−1(yn)

p⊗nUV (u
n, vn)


× log

∑
un∈f−1(xn),vn∈g−1(yn) p

⊗n
UV (u

n, vn)

p⊗nXY (x
n, yn)

≥
∑
un,vn

p⊗nUV (u
n, vn) log

p⊗nUV (u
n, vn)

p⊗nXY (f(u
n), g(vn))

=
∑
un,vn

p⊗nUV (u
n, vn) log

pdH(un,vn)qn−dH(un,vn)

pdH(f(un),g(vn))qn−dH(f(un),g(vn))

= log
1− p
p
· E dH(f(Un), g(V n)),

where q = 1 − p. It is easy to see that the inequality holds
with equality if and only if both f and g are bijections.

The next lemma follows easily from Lemma 4, the data-
processing inequality, and Pinsker’s inequality.

Lemma 6. The following two claims hold:
(i) 1

2 ln 2

∑n
i=1 (E(XiYi)− (1− 2pX 6=Y ))

2 ≤ ε
(ii) 1

2 ln 2

∑n
i=1 E

2(Xi) ≤ ε

Let us now write Xi = fi(U
n), Yi = gi(V

n), where fi, gi
are the Boolean functions generating the ith coordinate in the
respective sequences. First, from Lemma 6 and the fact that
W 0[f ] = f̂∅, it is clear that these functions are close to being
unbiased, i.e.

∑
i∈[n]W

0[fi] +W 0[gi] ≤ ε · 4 ln 2.
Next, we show that most of the energy of each of these

functions is concentrated on the first level.

Lemma 7. It holds that

W 1[fi] = 1− εfi , W 1[gi] = 1− εgi ,

where εfi , ε
g
i ≥ 0 and∑

i∈[n]

(
εfi + εgi

)
≤ 2ε

p(1− 2p)
.

Proof. Write

ε ≥ D(pXnY n‖p⊗nXY )
≥ E [dH(f(Un), g(V n))]− np (3)

=
n∑
i=1

(Pr (fi(U
n) 6= gi(V

n))− p)

=
1

2

n∑
i=1

(1− 2p− E[fi(Un)gi(V n)])
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≥ 1

2

n∑
i=1

(
1− 2p− 1

2

n∑
k=0

(1− 2p)k
(
W k[fi] +W k[gi]

))
(4)

≥ −ε · ln 2 + 1− 2p

2

n∑
i=1

(
1− 1

2

(
W 1[fi] +W 1[gi]

)
−(1− 2p)

(
1− 1

2

(
W 1[fi] +W 1[gi]

)))
(5)

= −ε · ln 2 + p(1− 2p)
n∑
i=1

(
1− 1

2

(
W 1[fi] +W 1[gi]

))
where (3) follows from Lemma 5, (4) follows from Lemma 2
and (5) follows since the functions are close to being unbiased
and

∑n
k=2(1− 2p)kW k[f ] ≤ (1− 2p)2

∑n
k=2W

k[f ] ≤ (1−
2p)2

(
1−W 1[f ]

)
. Hence, we have

n∑
i=1

(
W 1[fi] +W 1[gi]

)
≥ 2n− 1 + ln 2

p(1− 2p)
· ε.

The claim follows by recalling that since fi, gi are Boolean
functions, then W 1[fi],W

1[gi] ≤ 1 (and using ln 2 < 1)

Now, appealing to the Friedgut-Kalai-Naor (FKN) Theorem
[16], we conclude that fi, gi are close to some dictator function
(a function dominated by one coordinate), i.e., for any i ∈ [n]
there exist ki, `i ∈ [n] and ai, bi ∈ {−1, 1} such that

Pr(Xi 6= aiUki) ≤ K · ε
f
i , Pr(Yi 6= biV`i) ≤ K · ε

g
i

for some universal constant K. Our penultimate step is to
show that the functions f and g are close to the sample signed
permutation of the Hamming cube. In order to show that the
mappings ki ← i and `i ← i are bijections from [n] to [n],
assume without loss of generality that k1 = k2 = 1, and
that a1 = a2 = 1. FKN Theorem then states that both X1

and Y1 are equal to U1 with high probability, which implies
that they are equal with high probability, in contradiction to
Lemma 4, which implies I(X1;X2) ≤ ε. Next, in order to
show that ki = `i and ai = bi, without loss of generality we
need to consider two cases: First, assume that k1 = 1, `1 = 2
and a1 = b1 = 1. FKN Theorem then states that X1 = U1,
Y1 = V2 with high probability, and since Pr(U1 6= V2) =

1
2 ,

it follows that Pr(X1 6= Y1) is about 1
2 . The second case is

where k1 = `1 = 1 but a1 = 1, b1 = −1. Now, X1 = U1 and
Y1 = −V1 with high probability, implying that Pr(X1 6= Y1) is
about 1−p. However, both of these cases contradict Lemma 6,
which states implicitly that (Pr(X1 6= Y1)− p)2 ≤ ε.

The only thing left to show is the relation to the total
variation distance. Assume without loss of generality that the
coordinate permutation induced by ki ← i is the identity
one, i.e., that ki = i, and that ai = 1 for all i. Set the
scalar noiseless channels qXi|Ui

(xi|vi) = 1(xi = ui) and
qYi|Vi

(yi|vi) = 1(yi = vi). The TV distance is then

E dTV

(
pXn|Un(· | Un) ,

n∏
i=1

qXi|Ui
(·|Ui)

)

= Pr(Xn 6= Un) ≤
n∑
i=1

Pr (Xi 6= Ui) ≤
2Kε

p(1− 2p)
.

By appealing to Markov’s inequality, we conclude the proof.

C. Randomized Schemes- sketch of proof
In the following, we give a brief overview of the randomized

scheme, in which Alice and Bob are allowed to use local
randomness (the complete proof is available in the extended
paper). The functional representation lemma [17], states that
pXn|Un and pY n|V n can be replaced by random functions,
i.e., we can write Xi = fi(U

n, A), Yi = gi(V
n, B) where

A,B and (Un, V n) are mutually independent, and where
fi(·, a), gi(·, b) are Boolean functions. From the DPI and
tensorization properties of the maximal correlation between
X and Y , ρm(X;Y ), combined with the fact that the max-
imal correlation of a DSBS(p) is 1 − 2p, we have that
ρm(Xi;Yi|A,B) ≤ 1− 2p. This allows us to show that, with
high probability over the local randomness, fi(·, a), gi(·, b) are
close to some dictator functions, which implies Theorem 3 for
δ = 0, given that ε = o(1/n). Then, by allowing δ to be of the
same order, we can incorporate it into the simulation distortion
ε and conclude the proof.
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