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Problem Setting

MAP decoder
m̂MAP(y) = arg max

m
p(m|y)

(+) Optimal: minimizes P{M̂ 6= M}

(−) Exponential complexity implementation

Holy grail of channel coding

— Near-optimal performance

— Low-complexity implementation
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Randomized Likelihood Decoding

Suboptimal decoding: Generate M̂ = M̂RL according to the posterior

p(m|y) =
p(y|x(m))∑
m′ p(y|x(m′))

Proof device [YAG13]: Plays a role of joint typicality decoding

p(m|y) =
2i(y;x(m))∑
m′ 2i(y;x(m′))

where

i(y; x) = log
p(y|x)

p(y)

Provable error bound [KKM+16, LCV17, BHK+18]

P{M̂RL 6= M} ≤ 2 P{M̂MAP 6= M}

Near-optimal performance requirement is satisfied
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Monte Carlo Decoding

How to efficiently generate a sample from p(m|y)?

Due to normalization, p(m|y) is rather hard to compute

For most channels, computing the likelihood p(y|x(m)) is straightforward

Most Monte Carlo (MC) sampling algorithms rely only on this unnormalized posterior

Markov Chain Monte Carlo decoding

Run an ergodic Markov chain on the message space (or the codeword space)

Distribution of the Markov chain should converge to the posterior p(m|y)

Pioneered by Neal [Nea01] (see also [MM09])

Speed of convergence is the main computational bottleneck
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Outline

We present several MC or MCMC methods to implement RL decoding

Rejection sampling

Gibbs sampling

Metropolis sampling

To demonstrate the performance of these MC decoders, the following toy example is used

Code: A (40,20) irregular LDPC code (106 messages)

Channel: BSC with crossover probability p = 0.04
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Rejection Sampling — Overview

Main idea

Target pmf p(v) = p∗(v)/Zp is difficult to sample from

Find another pmf q(v) = q∗(v)/Zq such that

— q(v) is easy to sample from

— The ratio p∗(v)/q∗(v) ≤ 1 and is easy to compute

Algorithm — at the tth iteration

(1) Sample V (t) ∼ q(v)

(2) Draw U(t) ∼ Unif([0, 1]) ⊥⊥ V (1),V (2), · · · ,V (t)

(3) If U(t) ≤ p∗(v)/q∗(v), output V (t) and stop;

p∗(v)

v

q∗(v)

q∗(v) · u

otherwise, reject V (t) and repeat from (1) for V (t+1)

If τ is the stopping time, then V (τ) ∼ p(v) and E[τ ] = Zp/Zq (∼ |V|)

6/15



Rejection Sampling — Overview

Main idea

Target pmf p(v) = p∗(v)/Zp is difficult to sample from

Find another pmf q(v) = q∗(v)/Zq such that

— q(v) is easy to sample from

— The ratio p∗(v)/q∗(v) ≤ 1 and is easy to compute

Algorithm — at the tth iteration

(1) Sample V (t) ∼ q(v)

(2) Draw U(t) ∼ Unif([0, 1]) ⊥⊥ V (1),V (2), · · · ,V (t)

(3) If U(t) ≤ p∗(v)/q∗(v), output V (t) and stop;

p∗(v)

v

q∗(v)

q∗(v) · u

otherwise, reject V (t) and repeat from (1) for V (t+1)

If τ is the stopping time, then V (τ) ∼ p(v) and E[τ ] = Zp/Zq (∼ |V|)

6/15



Rejection Sampling Decoder — Implementation
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2X MAP decoder

MAP decoder

Rejection sampling

Decode the channel output y = [ y1︸︷︷︸
k bits

y2︸︷︷︸
n − k bits

] of a systematic linear code

For p∗y (m) = p(y|x(m)) = (p/(1− p))dH (x(m),y) (1− p)n, choose

q∗y (m) = (p/(1− p))dH (m,y1) (1− p)n, Zq = (1− p)n−k
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Gibbs Sampling — Overview

Main idea

Target k-variate pmf p(v) is difficult to sample from

Sampling from the conditional marginal distribution p(vi |v¬i ) may be easier

Run a Markov chain based on coordinate-wise sampling

Algorithm — at the tth iteration

(1) Randomly pick a coordinate i ∼ Unif[k]

(2) Sample the i-th coordinate V
(t)
i ∼ p(vi |v(t−1)

¬i )

(3) Fix the other coordinates v
(t)
j = v

(t−1)
j , j ∈ [k] \ {i}, and repeat from (1) for V (t+1)

Connection between Gibbs and BP decoding

Both involve iterative message passing between check nodes and variable nodes

The update rule for BP is deterministic, whereas the one for Gibbs is random

BP is heuristic, whereas Gibbs is asymptotically exact
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Gibbs Decoder — Implementation
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Gibbs decoder

Target pmf: p(m|y)

At the tth iteration, generate M
(t)
i ∼ p(mi |y,m(t−1)

¬i )
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Gibbs Decoder — Variations
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Annealed block Gibbs,  = 0.25, blocksize = 1

Annealed block Gibbs,  = 0.25, blocksize = 2

Annealed block Gibbs,  = 0.25, blocksize = 3

Techniques for speeding up Gibbs sampling

Temperature control: Sample from the annealed pmf pα(m|y) ∝ pα(m|y)

Soft parity constraint [Nea01]: Perform random walk on the codeword space

Block sampling: Update a set B of coordinates at once M
(t)
B ∼ p(mB |y,m(t−1)

¬B )
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Metropolis Sampling — Overview

Main idea

Find another Markov chain over the same state space that is easy to sample from

Make the MC converge to the target distribution via acceptance/rejection steps

Algorithm — at the tth iteration

(1) Propose a new move v (t) → v ′ by the underlying (reversible) MC

(2) Accept/reject the proposal depending on likelihood ratio p(v ′)/p(v (t)):

— if p(v ′)/p(v (t)) ≥ 1, set v (t+1) = v ′;

— if p(v ′)/p(v (t)) < 1, set v (t+1) = v ′ with probability; p(v ′)/p(v (t))

— otherwise, fix v (t+1) = v (t)

(3) Repeat from (1) for V (t+1)

Connection to other sampling methods

Rejection sampling: Close to slice sampling, a special case of Metropolis

Gibbs sampling: Irrejectable proposal based on the target conditional marginal pmf
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Metropolis Decoder — Implementation
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Hypercube random walk

Nearest neighbor

Target pmf: p(m|y)

Choice of underlying MC strongly affects convergence time:

— Hypercube

— I.I.D. (slice sampling)

— Nearest neighbor
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Metropolis Decoder — Variations
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MAP decoder

Parallel Metropolis, nearest neighbor, L=1

Parallel Metropolis, nearest neighbor, L=10

Parallel Metropolis, nearest neighbor, L=100

Techniques for speeding up Metropolis sampling

Temperature control (annealing) and soft parity

Parallelization: At each iteration

(1) Take L > 1 samples from the underlying MC

(2) Propose the most probable sample m′ for accept/reject
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Concluding Remarks

Monte Carlo methods for RL decoder

Many open problems (larger codes, further speedup, circuit implementation)
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