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Abstract

Inspired by the distributed simulation problem in network information theory, this
paper proposes a new joint latent variable model to learn a succinct common infor-
mation and presents a simple training scheme for this model, where the succinct-
ness is measured by Wyner’s common information. The proposed model includes
two groups of latent variables—first, the common latent variable that captures the
common information (e.g., a shared concept) of the two data variables, and sec-
ond, the local latent variables that capture the remaining randomness (e.g., texture
and style) in respective data variables. As an example to illustrate the efficiency of
the proposed model and accompanied training techniques, conditional generation
(given an image of N ∈ {0, . . . , 9}, generate an image of (N + 1) mod 10) and
style transfer (replicate a similar style of a given digit image in generating a new
image) experiments using the MNIST dataset are exhibited.

1 Introduction

Suppose that given a sample from an underlying joint distribution q(x,y), we wish to simulate,
or more precisely, to draw samples from q(x,y). Then, what is the minimum description rate we
would need to make the simulation as exact as possible? In network information theory, A. Wyner
formualted this problem as distributed simulation of correlated sources, and proved that the mini-
mum description rate of Z is characterized by the so-called Wyner’s common information (CI)

J(X;Y) := min
X−Z−Y

I(X,Y;Z), (1)

where the minimum is over all conditional distributions q(z|x,y) such that X − Z − Y form a
Markov chain [1, 2]. Note that the minimization over all possible joint encoders q(z|x,y) in (1)
is equivalent to the minimization over all possible decoders p(z)p(x|z)p(y|z) that are consistent
with q(x,y), i.e.,

∫
p(z)p(x|z)p(y|z) dz = q(x,y). Wyner’s common information also appears

in distributed channel synthesis [3] and the recent study of finding universal features from weakly
correlated Gaussian vectors [4].

Based on this observation, we define the random variable Z corresponding to the minimizer in (1)
as the most succinct “common representation” of correlated sources q(x,y), and we will refer it as
Wyner’s common latent variable. In this view, the compactness of an arbitrary random variable Z
in learning q(x,y) is naturally quantified by the mutual information I(X,Y;Z). Interestingly, the
optimization problem in (1) can be relaxed and optimized efficiently using the standard variational
learning techniques developed in Bayesian statistics and variational autoencoders as will be shown
shortly. After learning the decoder model, we can also perform conditional inference from X to Y
by learning the posterior distribution p(z|x) using the same variational technique. The conditional
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inference will then be performed following the Markov chain X − Z − Y. Once we establish the
variational learning of Wyner’s common latent variable, we propose a new latent variable model
with auxiliary random variables that explicitly represent the randomness in the stochastic decoders.

2 Main Results

2.1 Variational Learning of Wyner’s Common Latent Variable

Variational relaxation of Wyner’s CI. Let us use the shorthand notation W for (X,Y). The
following derivation in this section holds for any random vector W, unless specified otherwise.
With W = (X,Y), the Markovity X− Z−Y implies that p(w|z) = p(x|z)p(y|z).
To ease the optimization problem in (1), we first assume that the joint distribution pθ(z)pθ(w|z)
belongs to a parametric family parameterized by θ. Then eq. (1) can be rewritten as

minimize
θ

I(Wθ;Zθ)

subject to pθ(w) = q(w),
(2)

where pθ(w) :=
∫
pθ(z)pθ(w|z) dz, and (Wθ,Zθ) ∼ pθ(z)pθ(w|z). We introduce two approxima-

tions to relax the optimization problem to a tractable form. First, we replace the equality constraint
in (2) for consistency with an inequality constraint introducing a slackness in terms of a KL diver-
gence, i.e., for some small ∆ > 0, D(q(w) ∥ pθ(w)) ≤ ∆. Secondly, we introduce an approximate
posterior distribution qϕ(z|w) as a proxy to the intractable model posterior pθ(z|w)2, which leads
us an upper bound on the KL divergence term as

D(q(w) ∥ pθ(w)) ≤ D(q(w)qϕ(z|w) ∥ pθ(w)pθ(z|w))

= D(q(w)qϕ(z|w) ∥ pθ(z)pθ(w|z)). (3)

Also, we replace the mutual information term I(Wθ;Zθ) = D(pθ(z)pθ(w|z) ∥ pθ(w)pθ(z)) with
D(q(w)qϕ(z|w) ∥ q(w)pθ(z)) to make it trainable. All the approximation steps become exact when
q(w)qϕ(z|w) ≡ pθ(z)pθ(w|z), i.e., the latent variable model is consistent with q(w) and the ap-
proximate posterior qϕ(z|w) matches to the true posterior pθ(z|w).

By introducing a Lagrange multiplier λ > 0, then the optimization problem can be converted into
an unconstrained form

minimize
θ,ϕ

D(q(w)qϕ(z|w) ∥ pθ(z)pθ(w|z)) + λD(q(w)qϕ(z|w) ∥ q(w)pθ(z)), (4)

or equivalently,

minimize
θ,ϕ

Eq(w)

[
(1 + λ)D(qϕ(z|W) ∥ pθ(z)) +

∫
qϕ(z|W) log

1

pθ(W|z)
dz

]
. (5)

If λ = 0 in (5), it becomes equivalent to the expected value of the evidence lower bound (ELBO)
in variational Bayesian methods (see, e.g., [5]), and thus it appears as the loss function for the
variational autoencoder (VAE) [6, 7]. The first and the second terms are called the regularization
loss and the reconstruction loss, respectively. With λ = 0 in (4), it can be viewed as matching two
joint distributions by minimizing the KL divergence. We also remark that the weighted version of
the objective with λ > 0 also appears in the recent β-VAE model [8].

Practical optimization procedure and deep neural networks. In practice, we have access to the
underlying distribution q(w) only in the form of the empirical distribution qemp(w) given a sample
{wi}Ni=1, and thus the expectation over q(w) is replaced with the summation over the sample.

With a certain parametric family, the regularization loss D(qϕ(z|w) ∥ pθ(z)) can be given as an
analytic form of a function of the parameters of the distributions, which are then differentiable with
respect to θ and ϕ. For example, the most common choice is to take pθ(z) = p(z) as a standard
Gaussian, and both the encoders pθ and the decoders qϕ as diagonal Gaussians. The gradient of the
reconstruction loss involving the integral can be estimated efficiently by Monte Carlo approximation

2This is equivalent to the standard technique of introducing an approximate posterior in variational Bayesian
methods [5] to detour the often intractable marginal distribution pθ(w).
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of the integral with the reparameterization trick [6]. Deep neural networks that provide rich paramet-
ric families for qϕ(z|w) and pθ(w|z) can be simply plugged in, and then the model parameters can
be trained efficiently with backpropagation. We note that, throughout the paper, every distribution is
parameterized with a separate neural network although it is indexed by the same parameter θ or ϕ.

Back to Wyner’s common latent variable. We note that in (5) the regularization loss corresponds
to the mutual information I(Z;W) = I(Z;X,Y), while the reconstruction loss corresponds to the
conditional entropy h(W|Z) = h(X|Z) + h(Y|Z), which quantifies the expected uncertainty in
guessing W = (X,Y) given Z. Therefore, variational optimization of Wyner’s common latent vari-
able tries to extract the most succinct common structure from the data pair X and Y by minimizing
the mutual information, while it also tries to decrease uncertainty in guessing X and Y given Z by
minimizing the conditional entropy.

We remark that the joint objective in (5) with λ = 0 still minimizes I(Z;X,Y) in disguise, and
thus finds a succinct factor implicitly. As a simple showcase of the idea, we demonstrate how the
succinctness of the common latent variable Z can be controlled by manipulating the size of Z when
λ = 0 is taken; see Section 3.

2.2 The Proposed W-model

Building upon the variational learning of Wyner’s common latent variable, we propose a new latent
variable model with common information extraction by refining the decoders as follows. We intro-
duce an auxiliary random variable T, and reparameterize pθ(w|z) by pθ(w)δ(w−wθ(t, z)), where
δ(·) denotes the Dirac delta function, and wθ(t, z) is a deterministic mapping parameterized by θ.
The new latent variable model then becomes pθ(z)pθ(t)δ(w −wθ(t, z)). This technique is similar
to the functional representation lemma in network information theory (see, e.g., [2, Appendix B])
and the reparameterization trick proposed in [6].

The corresponding graphical model for W = (X,Y) is illustrated in Fig. 1(b). Here, we denote
U and V in place of T for the implicit randomness in the stochastic decoders pθ(x|z) and pθ(y|z),
respectively, and refer as the local latent variable for each X and Y. In this case, the motiva-
tion for the reparameterization of the decoders is clear; each U and V corresponds to the local
randomness used to generate X and Y, respectively, in the distributed simulation. For simplic-
ity, we further assume the additional conditional independence for the joint posterior distribution
qϕ(u,v, z|x,y) = qϕ(u|x,y)qϕ(v|x,y)qϕ(z|x,y) in this paper. (See Figure 1(c).)
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Figure 1: (a) The original joint latent variable model, (b) the new decoder model with refined de-
coders, and (c) the corresponding encoder model for variational learning. In the graphical models
above, solid and double arrows denote stochastic and deterministic mapping, respectively.

The advantage in the refinement is clearly twofold. First, it improves the expressivity of the decoders
by far than the parameterization by product distributions. Moreover, it leads us to learning the local
latent variables U and V explicitly via the variational learning technique, so that we can use them
in the subsequent inference tasks; see Section 2.3.

The new decoder model can be trained via the same procedure as previously derived in Section 2.1,
with the proper joint encoder qϕ(z̃|w), where Z̃ := (Z,U,V). For the ill-defined terms in the
objective function due to the Dirac delta function, we replace it with an isotropic Gaussian with
small fixed variance, i.e., δ(w−wθ(t, z̃)) ≈ N (w|wθ(t, z̃), ϵ

2I) for some small ϵ > 0. Then from
(5), the regularization loss becomes

(1 + λ)D(qϕ(z|x,y) ∥ pθ(z)) +D(qϕ(u|x,y) ∥ pθ(u)) +D(qϕ(v|x,y) ∥ pθ(v)),
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and the reconstruction loss becomes
1

2ϵ2

∫
qϕ(z|x,y)

(∫
qϕ(u|z,x)∥x− xθ(u, z)∥22 du+

∫
qϕ(v|z,y)∥y − yθ(v, z)∥22 dv

)
dz.

Here, the Lagrange multiplier λ for Wyner’s CI is put only on D(qϕ(z|x,y) ∥ pθ(z)), which corre-
sponds to the mutual information term I(X,Y;Z).

For conditional inference via the common latent variable, we need to learn the approximate poste-
riors qϕ(z,u|x) = qϕ(z|x)qϕ(u|x) and qϕ(z,v|y) = qϕ(z|y)qϕ(v|y) as proxy to the model poste-
riors pθ(z,u|x) and pθ(z,v|y). All encoders are then to be trained with the distribution matching
framework as described for the joint model, while the overall training scheme is readily discussed
in the next paragraph. After Wyner, we name the entire probabilistic model including the new joint
model (Fig. 1(b)) and all the approximate posteriors (Fig. 1(c)) as the W-model. Once the encoders
and the decoders are parameterized by deep neural networks, we name the corresponding neural
network architecture as the W-VAE.

Training. There are many possible training schemes for the W-model, but we present here a simple
two-step algorithm to illustrate the idea. In the first step, we train all θ and ϕ in matching joint
distributions qϕ and pθ over (X,Y,Z,U,V). (See Figure 2(a).) In the second step, we then train
the marginal encoder qϕ(z|x) by matching the joint distributions qϕ and pθ over (X,Z,U), i.e.,

minimize
ϕ

D(qemp(x)qϕ(z|x)qϕ(u|x, z) ∥ pθ(z)pθ(u)δ(x− xθ(u, z))).

Here, the marginal encoder is to be fit only based on the decoders that is already trained in the
first step.3 The encoders qϕ(z|y)qϕ(v|y) in the other direction of the Markov chain can be trained
similarly by symmetry. (See Figure 2(b).)
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(a) Training the joint model (b) Training the marginal models

Figure 2: The proposed two-step training algorithm.

Comparison to existing VAE architectures. The W-model improves upon the existing VAE ar-
chitectures, namely, the conditional VAE (CVAE) [10, 11] and the joint VAE (JVAE) [12, 13, 9], by
taking the best of the two architectures. First, the CVAE tends to overfit the realization of the con-
ditioning variable, and suffer from poor generation performance for high-dimensional data. Since
the W-model trains the joint distribution first, however, it does not suffer such problems. Second, by
specifying and learning the local latent variables U and V explicitly, it can perform new inference
tasks utilizing them as described below.

2.3 Statistical Inference via the W model

We describe how to perform joint generation, conditional generation, and style transfer via the pro-
posed W-model.

• Joint generation. We sample (U,V,Z) ∼ pθ(u)pθ(v)pθ(z), and then take X = xθ(U,Z) and
Y = yθ(V,Z).

• Conditional generation. Sampling Y given X = x can be performed in three steps; see Fig-
ure 3(a). First sample Z ∼ qϕ(z|x), then sample U ∼ pθ(u), and finally take Y = yθ(V,Z).

3We note that this training scheme is similar to one proposed in [9] as an alternative.
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• Style transfer. Suppose that the common information Z is well-extracted, and the local random-
ness U and V capture the style and/or texture of each random variable. Then, we can utilize
the local latent variables for inference tasks such as style transfer; see Figure 3(b). For example,
let (X,Y) be a pair of correlated images generated from the common concept but with different
styles. Suppose that a reference image x0 for style and a set of reference images y1, . . . ,yM for
concept are given. Given encoders qϕ(z,u|x) and qϕ(z,v|y) and a decoder xθ(z,u), we gener-
ate samples X with the same style of the reference sample x0 by first sample U0 ∼ qϕ(u|x0)
(guessing style of x0), next sample Zj ∼ qϕ(z|yj) (guessing concept from yi), and finally take
Xj = xθ(U0,Zj) (generating new image Xj by combining Zj and U0).
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(a) Conditional generation
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(b) Style transfer

Figure 3: Schematic illustrations for conditional generation and style transfer.

3 Experiment

We generated a set of pairs of digit images {(Xi,Yi)}Ni=1 from the MNIST dataset [14] such that
label(Yi) = label(Xi)+1 mod 10. There are 10 different classes in this dataset, where each class
consists of 5,000 samples. Note that X and Y are correlated only through the label information.

In this experiment, we took λ = 0 and demonstrated the performance of conditional generation and
style transfer. To control the succinctness of the common latent variable and the expressivity of the
decoders by the sizes of the latent variables, we took all the latent vectors as categorical random
vectors, and thus the training was done with the reparameterization with the Gumbel–softmax pa-
rameterization [15, 16]. For simplicity, we call the dimension N and cardinality K of a categorical
random vector Z as the size of the random vector, and denote it as |Z|.
All encoder and decoder networks have the same architecture of three fully connected layers with
512 hidden units each. For better visual quality, we trained a convolutional autoencoder with the
original MNIST dataset, and used the trained autoencoder as a wrapper outside the stochastic en-
coders and decoders. For each case, the maximum number of epochs was taken to be 50, and the
learning rate and the temperature for the Gumbel-softmax was annealed along the training epochs.
For the objective function, the hyperparameter ϵ was taken such that 2ϵ2 = 10−4.

3.1 Varying |Z| with fixed |U|, |V|

We fixed the size of the local latent vectors U and V by (N,K) = (20, 10), and increased the size of
the common latent vector Z to show how the common information extraction and the corresponding
generation performance are affected by the size of Z (See Figure 4). In conditional generation
(Figure 4(a)), we wish to achieve both high accuracy of label and high variability in style, but
there exists a tradeoff. When the size of Z was too small to contain the common information (e.g.,
(N,K) = (1, 10)), it resulted in a poor accuracy. On the other hand, when the size was too large
(e.g., (N,K) = (30, 10)), Z tended to contain all the information of X and Y, while U and V
contained no information, which resulted in a poor variability. For style transfer (Figure 4), similar
observations can be made. The consistency of the style along the row implies that U contained the
style information, and generated images with correct labels along the column imply that Z contained
the label information.
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Figure 4: Sample results with varying dimension (N) and cardinality (K) of Z with fixed size of
local latent variables U,V with (N,K) = (2, 10). In (a), the leftmost column shows the inputs x,
and the rest columns are the generated samples Yi. In (b), the leftmost column shows the reference
images for style, and the topmost row shows the reference images for label. In the current example,
(N,K) = (1, 100) shows the most visually pleasing result in terms of accuracy and variability, for
both tasks.

3.2 Varying |U|, |V| with fixed |Z|

We also empirically show that the expressivity of the decoders can be controlled through the dimen-
sions of local latent vectors U and V. As the baseline, we include a degenerate model without
any local randomness, where the mean squared error (MSE) is used instead of the log-loss in the
reconstruction. (Note that this case corresponds to 2ϵ2 = 1 in our modification.) Since the diagonal
Gaussian has a limited expressivity by assuming independent pixels, taking actual samples from
the Gaussian distributions may perform worse. Hence, we took the output of the neural network
(e.g., xθ(z)) as a sample. Intuitively, increasing the number of dimensions of the local randomness
gave better generation results. However, it can be also seen that too large local latent variables (e.g.,
(N,K) = (30, 10)) also inhibited the proper learning of the model, since then U and V may contain
all the information about both X and Y while Z learns nothing.

4 Concluding Remarks

In this preliminary work, based on the notion of common information in network information theory,
we developed a new latent variable model, described its variational learning method, and illustrated
how to perform various inference tasks using the proposed model. The preliminary experimental
results demonstrated the potential of the proposed model as a new way of learning the succinct
common latent variable that can be further developed and refined for more complex dataset.

Here we remark several future directions to be explored. First, we plan to properly justify Wyner’s
common information as a measure of succinctness of a shared randomness of correlated sources. For
example, is there any optimality of the Wyner’s common latent variable in predicting X and/or Y?
Further, the effect of the Lagrange multiplier λ on the tradeoff between learning succinct common
information and predicting X and Y will be carefully studied. Provided that these points can be
addressed properly, we believe that the variational learning of Wyner’s common information can
be a new information theoretic principle in representation learning as the information bottleneck
principle [17].
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Figure 5: Sample results with varying dimension (N) and cardinality (K) of U and V with fixed
size of common latent vector Z with (N,K) = (1, 100). The presentation format is same to Fig-
ure 4.
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