Input Impedance

\[B = \frac{R_1}{R_1 + R_2} \]

\[I_{in} = \frac{V_{in} - B V_{out}}{R_d} = \frac{V_{in}}{R_d} (1 - BH) = \frac{V_{in}}{R_d} (1 - \frac{AB}{1 + AB}) \frac{V_{in}}{R_d} (1 + AB) \]

\[\frac{I_{in}}{V_{in}} = \frac{1}{R_d} \left(1 + \frac{GB}{3} \right) = R_d + \frac{1}{s C_{eff}} \quad C_{eff} = \frac{1}{GB R_d} \]

Input impedance is \(R_d \) in series with small capacitor.

E.g. \(G = 2 \times 10^6 \), \(B = 0.1 \), \(R_d = 10^7 \rightarrow 0.16 \text{ pF} \)

\[Z = R + j X \]

at \(w = GB \), \(X_{eff} = \frac{GB R_d}{GB} = R_d \)

for \(w < GB \), \(X_{eff} > R_d \rightarrow \text{input is capacitive} \)

for \(w > GB \), \(X_{eff} < R_d \rightarrow \text{input is resistive} \)
Output Impedance

\[V_{out} = AV_{in} = \frac{A}{1 + AB} \]
\[I_{sc} = \frac{AV_{in}}{R_{o}} \]
\[Z_{out} = \frac{V_{in}}{I_{sc}} = R_{o} \frac{A}{AV_{in}/R_{o}} = \frac{R_{o}}{1 + AB} = \frac{1}{A} \]

\[Z_{out} = \frac{R_{o}}{1 + GB} = \frac{1}{R_{o} + \frac{GB}{R_{o}}} \]

Output impedance is \(R_{o} \) in parallel with inductor \(L_{eff} = \frac{R_{o}}{GB} \)

for \(w = GB \), \(X_{eff} = R_{o} \)

for \(w < GB \), \(X_{eff} < R_{o} \rightarrow \) output is inductive

for \(w > GB \), \(X_{eff} > R_{o} \rightarrow \) output is resistive

3 effects of feedback

1. Reduces and stabilizes gain, increasing bandwidth
2. Increases \(Z_{in} \), but makes it capacitive
3. Reduces \(Z_{out} \), but makes it inductive
Slew Rate Limiting

\[i = C \frac{dV_{at}}{dt} \]

\[V_{out} = A \sin(cut) \]

\[i = ACw \cos(wt) \]

\[|i| = ACw \rightarrow \text{current scales with:} \]
 - Signal amplitude
 - Capacitance
 - Frequency

\[\frac{dV_{at}}{dt} \frac{1}{|i_{max}|} = \frac{i_{max}}{C} \]

Overshoot and Rise Time

\[\% \text{ overshoot} = \left(\frac{v}{x} - 1 \right) \times 100 \]

10% to 90% rise time
Stability Theory

Transfer function always has form $H(s) = \frac{A}{1+AB}$
Always has $1+AB$ in denominator
Numerator depends on how the input enters the circuit

\[\frac{A}{1+AB} \]

Another common form:

\[\frac{AB}{1+AB} \]

If we cut the feedback loop here,

Then we have \(Out = AB In \) where \(AB \) is the open-loop transfer function.

We can analyze \(AB \) to determine stability of the closed loop system.

Circuit cannot be stable if any subcircuit \((A,B)\) is unstable.

How to determine stability:

Does \(1+AB \) have any zeros in right half plane?

Is \(AB = -1 \) for any \(s \)?

Remember \(-1 = 1 \times e^{-180°}\)

Point of neutral stability (just barely stable/unstable):

\[|AB| = 1 \text{ and } <AB = ±180° \]
Gain and Phase Margin

Gain Margin = \(-20 \log_{10} |AB|\) at \(\omega\) where \(<AB> = -180^\circ\)
Phase Margin = \(<AB> + 180^\circ\) at \(\omega\) where \(|AB| = 1\) (0 dB)

Example: \(AB = \frac{K}{(s+1)(s+10)(s+100)}\) for \(K = 10^4, 10^5, 10^6\)

<table>
<thead>
<tr>
<th>(K)</th>
<th>(GM)</th>
<th>(PM)</th>
<th>Stability</th>
<th>Roots of ((s+1)(s+10)(s+100) + K = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^4)</td>
<td>20 dB</td>
<td>45°</td>
<td>stable</td>
<td>(-101, -5 \pm 9j)</td>
</tr>
<tr>
<td>(10^5)</td>
<td>0 dB</td>
<td>0°</td>
<td>marginally stable</td>
<td>(-109, -0.8 \pm 30j)</td>
</tr>
<tr>
<td>(10^6)</td>
<td>-20 dB</td>
<td>45°</td>
<td>unstable</td>
<td>(-148, 18 \pm 80j)</td>
</tr>
</tbody>
</table>

\(\omega = 32\)
Nyquist Stability Criterion

Consider a contour C in the s plane.

If C does not enclose any poles or zeros, it will not go through a full 360° of phase.

$$1 + AB = \frac{\frac{\pi}{\pi} (s - z)}{\frac{\pi}{\pi} (s - p)} = \text{Mag} e^{i\Phi}$$

$$\text{Mag} = \frac{\pi}{\pi} \text{magnitude from zeros}$$
$$\Phi = \text{Z phase from zeros} - \text{Z phase from poles}$$

We take a contour along imaginary axis and extending to ∞ on positive real side.

Total number of times contour of $1 + AB$ encircles origin: $N = Z - P$ (clockwise)

$$Z = \# \text{Zeros of } 1 + AB \text{ in RHP}$$
$$P = \# \text{Poles of } 1 + AB \text{ in RHP}$$

But poles of $1 + AB = \text{poles of } AB$

We know these have no poles in RHP if A and B are stable.

If contour of $1 + AB$ encircles origin clockwise, system is unstable.

We actually look for encirclements of -1 in plot of AB.

If $AB = -1$, there is a pole right on the w axis.