let allowed atoms be N, AR, H, O, C, HE. let additional species be N2, AR, HE. let temperature exponent be n_k. let order of reaction be n. let units for A be [ cm^(3(n-1)) / ( s * mole^(n-1) * K^n_k ) ]. let units for E be [ kJ / mole ]. # HYDROGEN-OXYGEN CHAIN #Ref: Rightley and Williams, 1997 1f: H + O2 -> OH + O { a = 3.520E+16 n = -0.700 E = 71.420 } 2f: H2 + O -> OH + H { a = 5.060E+04 n = 2.670 E = 26.320 } 3f: H2 + OH -> H2O + H { a = 1.170E+09 n = 1.300 E = 15.210 } 4f: H2O + O -> 2OH { a = 7.600E+00 n = 3.840 E = 53.470 } # DIRECT RECOMBINATION #Ref: Saxena and Williams, 2005 5f: H + H + M1 -> H2 + M1 { a = 1.300E+18 n = -1.000 E = 0.000 } 6f: H + OH + M2 -> H2O + M2 { a = 4.000E+22 n = -2.000 E = 0.000 } 7f: O + O + M3 -> O2 + M3 { a = 6.170E+15 n = -0.500 E = 0.000 } 8f: H + O + M4 -> OH + M4 { a = 4.710E+18 n = -1.000 E = 0.000 } 9f: O + OH + M4 -> HO2 + M4 { a = 8.00E+15 n = 0.000 E = 0.000 } # HYDROPEROXYL REACTIONS #Ref: Troe, 2000; Saxena and Williams, 2005 10f: H + O2 + M5 -> HO2 + M5 { ai = 4.650E+12 ni = 0.440 Ei = 0.000 a = 5.750E+19 n = -1.400 E = 0.000 fca = 5.000E-01 fcta = 1.000E-30 fcb = 5.000E-01 fctb = 1.000E+30 } #Ref: Mueller et al., 1999 11f: HO2 + H -> 2OH { a = 7.080E+13 n = 0.000 E = 1.234 } 12f: HO2 + H -> H2 + O2 { a = 1.660E+13 n = 0.000 E = 3.443 } #Ref: Rightley and Williams, 1997 13f: HO2 + H -> H2O + O { a = 3.100E+13 n = 0.000 E = 7.200 } #Ref: Warnatz, 1984 14f: HO2 + O -> OH + O2 { a = 2.000E+13 n = 0.000 E = 0.000 } #Ref: Rightley and Williams, 1997 15f: HO2 + OH -> H2O + O2 { a = 2.890E+13 n = 0.000 E = -2.080 } # HYDROGEN PEROXIDE REACTIONS #Ref: Petersen et al., 1999; Saxena and Williams, 2005 # Change due to new OH thermodata 16f: 2OH + M6 -> H2O2 + M6 { ai = 7.400E+13 ni = -0.370 Ei = 0.000 a = 2.300E+18 n = -0.900 E = -7.120 fca = 2.650E-01 fcta = 9.400E+01 fcb = 7.350E-01 fctb = 1.756E+03 fcc = 1 fctc = 5.182E+03 } #Ref: Rightley and Williams, 1997 17f: 2HO2 -> H2O2 + O2 { a = 3.020E+12 n = 0.000 E = 5.800 } #Ref: Yetter et al., 1991 18f: H2O2 + H -> HO2 + H2 { a = 4.790E+13 n = 0.000 E = 33.300 } 19f: H2O2 + H -> H2O + OH { a = 1.000E+13 n = 0.000 E = 15.000 } #Ref: Rightley and Williams, 1997 20f: H2O2 + OH -> H2O + HO2 { a = 7.080E+12 n = 0.000 E = 6.000 } 21f: H2O2 + O -> HO2 + OH { a = 9.630E+06 n = 2.000 E = 16.700 } # CONVERSION OF CO TO CO2 #Ref: Rightley and Williams, 1997 22f: CO + OH -> CO2 + H { a = 4.400E+06 n = 1.500 E = -3.100 } 23f: CO + HO2 -> CO2 + OH { a = 6.00E+13 n = 0.000 E = 96.000 } #Ref: Saxena and Williams, 2005 24f: CO + O2 -> CO2 + O { a = 1.000E+12 n = 0.000 E = 199.577 } # FORMYL (HCO) REACTIONS #Ref: Lindstedt et al., 1997 25f: HCO + M7 -> CO + H + M7 { a = 1.860E+17 n = -1.000 E = 71.130 } #Ref: Saxena and Williams, work in progress 26f: HCO + H -> CO + H2 { a = 5.000E+13 n = 0.000 E = 0.000 } #Ref: Rightley and Williams, 1997 27f: HCO + O -> CO + OH { a = 3.000E+13 n = 0.000 E = 0.000 } 28f: HCO + O -> CO2 + H { a = 3.000E+13 n = 0.000 E = 0.000 } #Ref: Tsang, 1986 29f: HCO + OH -> CO + H2O { a = 3.000E+13 n = 0.000 E = 0.000 } #Ref: Timonen et al., 1988 30f: HCO + O2 -> CO + HO2 { a = 7.580E+12 n = 0.000 E = 1.715 } #Ref: Saxena and Williams, work in progress 31f: HCO + CH3 -> CO + CH4 { a = 5.000E+13 n = 0.000 E = 0.000 } # FORMALDEHYDE (CH2O) REACTIONS #Ref: GRI v. 1.2 32f: H + HCO + M8 -> CH2O + M8 { ai = 1.090E+12 ni = 0.480 Ei = -1.088 a = 1.350E+24 n = -2.570 E = 1.778 fca = 2.176E-01 fcta = 2.710E+02 fcb = 7.824E-01 fctb = 2.755E+03 fcc = 1 fctc = 6.570E+03 } #Ref: Juan Li, 2004 33f: CH2O + H -> HCO + H2 { a = 5.740E+07 n = 1.900 E = 11.500 } #Ref: Rightley and Williams, 1997 34f: CH2O + O -> HCO + OH { a = 3.500E+13 n = 0.000 E = 14.700 } 35f: CH2O + OH -> HCO + H2O { a = 3.900E+10 n = 0.890 E = 1.700 } #Ref Baulch et al., 1992 36f: CH2O + O2 -> HCO + HO2 { a = 6.000E+13 n = 0.000 E = 170.180 } #Ref Eiteneer et al., 1998 37f: CH2O + HO2 -> HCO + H2O2 { a = 4.110E+04 n = 2.500 E = 42.720 } # METHANE (CH4) Consumption #Ref: Hewson and Williams, 1999 38f: CH4 + H -> H2 + CH3 { a = 1.300E+04 n = 3.000 E = 33.630 } 39f: CH4 + OH -> H2O + CH3 { a = 1.600E+07 n = 1.830 E = 11.640 } #Ref: Frenklach et al., 1992 40f: CH4 + O -> CH3 + OH { a = 1.900E+09 n = 1.440 E = 36.300 } #Ref: Lindstedt wt al., 1997:acetylene; Li, 2000:methaneign 41f: CH4 + O2 -> CH3 + HO2 { a = 3.980E+13 n = 0.000 E = 238.030 } 42f: CH4 + HO2 -> CH3 + H2O2 { a = 9.030E+12 n = 0.000 E = 103.100 } # METHYL (CH3) Reactions #Ref: Frenklach et al., 1992 43f: CH3 + H -> T-CH2 + H2 { a = 1.800E+14 n = 0.000 E = 63.200 } 44f: CH3 + H -> S-CH2 + H2 { a = 1.550E+14 n = 0.000 E = 56.400 } #Ref: Grotheer et al., 1992; Saxena and Williams, work in progress 45f: CH3 + OH -> S-CH2 + H2O { a = 4.000E+13 n = 0.000 E = 10.470 } #Ref: Frenklach et al., 1992 46f: CH3 + O -> CH2O + H { a = 8.430E+13 n = 0.000 E = 0.000 } #Ref: Baulch et al., 1992 47f: CH3 + T-CH2 -> C2H4 + H { a = 4.220E+13 n = 0.000 E = 0.000 } #Ref: Frenklach et al., 1992 #modification: preexponential 'a' has been changed to improve ignition-time calculations 48f: CH3 + HO2 -> CH3O + OH { a = 5.000E+12 n = 0.000 E = 0.000 } #Ref: Zellner et al. 1988 49f: CH3 + O2 -> CH2O + OH { a = 3.300E+11 n = 0.000 E = 37.410 } 50f: CH3 + O2 -> CH3O + O { a = 1.100E+13 n = 0.000 E = 116.399 } #Ref: Hidaka et al., 1990 51f: CH3 + CH3 -> C2H4 + H2 { a = 1.000E+14 n = 0.000 E = 133.900 } #Ref: Lim and Michael, 1994 52f: CH3 + CH3 -> C2H5 + H { a = 3.160E+13 n = 0.000 E = 61.500 } #GRI v. 3.0 53f: H + CH3 + M9 -> CH4 + M9 { ai = 1.270E+16 ni = -0.630 Ei = 1.602 a = 2.470E+33 n = -4.760 E = 10.209 fca = 2.170E-01 fcta = 7.400E+01 fcb = 7.830E-01 fctb = 2.941E+03 fcc = 1 fctc = 6.964E+03 } #Ref: Hewson and Williams, 1999 54f: 2CH3 + M8 -> C2H6 + M8 { ai = 1.810E+13 ni = 0.000 Ei = 0.000 a = 1.270E+41 n = -7.000 E = 11.560 fca = 3.800E-01 fcta = 7.300E+01 fcb = 6.200E-01 fctb = 1.180E+03 } # SINGLET METHYLENE (S-CH2) REACTIONS #Ref: Frenklach et al., 1992 55f: S-CH2 + OH -> CH2O + H { a = 3.000E+13 n = 0.000 E = 0.000 } 56f: S-CH2 + O2 -> CO + OH + H { a = 3.130E+13 n = 0.000 E = 0.000 } #Ref: Leung et al., 1995 57f: S-CH2 + CO2 -> CO + CH2O { a = 3.000E+12 n = 0.000 E = 0.000 } #Ref: Frenklach et al., 1992 58f: S-CH2 + M10 -> T-CH2 + M10 { a = 6.000E+12 n = 0.000 E = 0.000 } # TRIPLET METHYLENE (T-CH2) REACTIONS #Ref: Baulch et al., 1992 59f: T-CH2 + H -> CH + H2 { a = 6.020E+12 n = 0.000 E = -7.480 } #Ref: Frenklach et al., 1992 60f: T-CH2 + OH -> CH2O + H { a = 2.500E+13 n = 0.000 E = 0.000 } 61f: T-CH2 + OH -> CH + H2O { a = 1.130E+07 n = 2.000 E = 12.550 } #Ref: Frank et al., 1986: 21stsymp 62f: T-CH2 + O -> CO + 2H { a = 8.000E+13 n = 0.000 E = 0.000 } 63f: T-CH2 + O -> CO + H2 { a = 4.000E+13 n = 0.000 E = 0.000 } #Ref: Leung et al. 1995 64f: T-CH2 + O2 -> CO2 + H2 { a = 2.630E+12 n = 0.000 E = 6.240 } 65f: T-CH2 + O2 -> CO + OH + H { a = 6.580E+12 n = 0.000 E = 6.240 } #Ref: Frenklach et al., 1992 66f: T-CH2 + T-CH2 -> C2H2 + 2H { a = 1.000E+14 n = 0.000 E = 0.000 } # METHYNE (CH) REACTIONS #Ref: Peters, 1993 67f: CH + O -> CO + H { a = 4.000E+13 n = 0.000 E = 0.000 } #Ref: Markus et al., 1996 68f: CH + O2 -> HCO + O { a = 1.770E+11 n = 0.760 E = -2.000 } #Ref: Leung et al., 1995 69f: CH + H2O -> CH2O + H { a = 1.170E+15 n = -0.750 E = 0.000 } #Ref: Markus et al., 1996 70f: CH + CO2 -> HCO + CO { a = 4.800E+01 n = 3.220 E = -13.500 } # METHOXY (CH3O) REACTIONS #Ref: Li and Williams, 1998 71f: CH3O + H -> CH2O + H2 { a = 2.000E+13 n = 0.000 E = 0.000 } 72f: CH3O + H -> S-CH2 + H2O { a = 1.600E+13 n = 0.000 E = 0.000 } 73f: CH3O + OH -> CH2O + H2O { a = 5.000E+12 n = 0.000 E = 0.000 } 74f: CH3O + O -> OH + CH2O { a = 1.000E+13 n = 0.000 E = 0.000 } 75f: CH3O + O2 -> CH2O + HO2 { a = 4.280E-13 n = 7.600 E = -14.800 } #Ref: Saxena and Williams, work in progress 76f: CH3O + M9 -> CH2O + H + M9 { a = 7.780E+13 n = 0.000 E = 56.540 } # ETHANE (C2H6) REACTION #Ref: Frenklach et al., 1992 77f: C2H6 + H -> C2H5 + H2 { a = 5.400E+02 n = 3.500 E = 21.800 } 78f: C2H6 + O -> C2H5 + OH { a = 1.400E+00 n = 4.300 E = 11.600 } 79f: C2H6 + OH -> C2H5 + H2O { a = 2.200E+07 n = 1.900 E = 4.700 } 80f: C2H6 + CH3 -> C2H5 + CH4 { a = 5.500E-01 n = 4.000 E = 34.700 } #Ref: Hewson and Williams, 1999; GRI v. 2.11 #Ref: Saxena and Williams, work in progress 81f: C2H6 + M8 -> C2H5 + H + M8 { ai = 8.850E+20 ni = -1.230 Ei = 427.700 a = 4.900E+42 n = -6.430 E = 448.399 fca = 1.600E-01 fcta = 1.250E+02 fcb = 8.400E-01 fctb = 2.219E+03 fcc = 1 fctc = 6.882E+03 } #Ref: Baulch et al., 1992; Saxena and Williams, work in progress 82f: C2H6 + HO2 -> C2H5 + H2O2 { a = 1.320E+13 n = 0.000 E = 85.646 } # ETHYL (C2H5) REACTIONS #Ref: Frenklach et al., 1992 83f: C2H5 + H -> C2H4 + H2 { a = 3.000E+13 n = 0.000 E = 0.000 } 84f: C2H5 + O -> C2H4 + OH { a = 3.060E+13 n = 0.000 E = 0.000 } 85f: C2H5 + O -> CH3 + CH2O { a = 4.240E+13 n = 0.000 E = 0.000 } 86f: C2H5 + O2 -> C2H4 + HO2 { a = 2.000E+12 n = 0.000 E = 20.900 } #Ref: Feng, 1993; Saxena and Williams, work in progress 87f: C2H5 + M9 -> C2H4 + H + M9 { ai = 1.110E+10 ni = 1.037 Ei = 153.840 a = 3.990E+33 n = -4.990 E = 167.360 fca = 8.320E-01 fcta = 1.203E+03 fcb = 1.680E-01 fctb = 0.000E+00 } # ETHENE (C2H4) REACTIONS #Ref: Bhargava et al., 1998 88f: C2H4 + H -> C2H3 + H2 { a = 4.490E+07 n = 2.120 E = 55.900 } 89f: C2H4 + OH -> C2H3 + H2O { a = 5.530E+05 n = 2.310 E = 12.400 } #Ref: Baulch et al., 1992 90f: C2H4 + O -> CH3 + HCO { a = 2.250E+06 n = 2.080 E = 0.000 } 91f: C2H4 + O -> CH2CHO + H { a = 1.210E+06 n = 2.080 E = 0.000 } #Ref: Hidaka et al., 1999 92f: C2H4 + C2H4 -> C2H3 + C2H5 { a = 5.010E+14 n = 0.000 E = 270.705 } #Ref: Marinov, 1995 93f: C2H4 + O2 -> C2H3 + HO2 { a = 4.220E+13 n = 0.000 E = 241.095 } #Ref: Baulch et al., 1992 94f: C2H4 + HO2 -> C2H4O + OH { a = 2.230E+12 n = 0.000 E = 71.920 } 95f: C2H4O + HO2 -> CH3 + CO + H2O2 { a = 4.000E+12 n = 0.000 E = 71.160 } #Ref: Baulch et al., 1994; Saxena and Williams, work in progress 96f: C2H4 + M9 -> C2H3 + H + M9 { a = 2.600E+17 n = 0.000 E = 404.041 } 97f: C2H4 + M9 -> C2H2 + H2 + M9 { a = 3.500E+16 n = 0.000 E = 299.290 } # VINYL (C2H3) REACTIONS #Ref: Saxena and Williams, work in progress 98f: C2H3 + H -> C2H2 + H2 { a = 4.000E+13 n = 0.000 E = 0.000 } #Ref: Varatharajan and Williams, 2001; Saxena and Williams, work in progress 99f: C2H3 + M9 -> C2H2 + H + M9 { ai = 6.380E+09 ni = 1.000 Ei = 157.430 a = 1.510E+14 n = 0.100 E = 136.758 fca = 7.000E-01 fcta = 1.000E+30 fcb = 3.000E-01 fctb = 1.000E-30 } #Ref: Marinov and Pitz, 1998 100f: C2H3 + O2 -> CH2O + HCO { a = 1.700E+29 n = -5.312 E = 27.209 } #Ref: Varatharajan and Williams, 2001; Marinov and Pitz, 1998 101f: C2H3 + O2 -> CH2CHO + O { a = 7.000E+14 n = -0.611 E = 22.018 } #Ref: Varatharajan and Williams, 2001; Marinov and Pitz, 1998 102f: C2H3 + O2 -> C2H2 + HO2 { a = 5.190E+15 n = -1.260 E = 13.860 } # CH2CHO REACTIONS #Ref: Marinov, 1995 103f: CH2CHO -> CH2CO + H { a = 1.047E+37 n = -7.189 E = 185.520 } # ACETYLENE (C2H2) REACTIONS #Ref: Frank et al., 1986 104f: C2H2 + O -> HCCO + H { a = 4.000E+14 n = 0.000 E = 44.600 } 105f: C2H2 + O -> T-CH2 + CO { a = 1.600E+14 n = 0.000 E = 41.400 } #Ref: Laskin et al., 1999 106f: C2H2 + O2 -> CH2O + CO { a = 4.600E+15 n = -0.540 E = 188.000 } #Ref: Lindstedt et al., 1997; Waly and Williams, 2001 107f: C2H2 + OH -> CH2CO + H { a = 1.900E+07 n = 1.700 E = 4.180 } 108f: C2H2 + OH -> C2H + H2O { a = 3.370E+07 n = 2.000 E = 58.580 } # CH2CO REACTIONS #Ref: Petrova and Williams 109f: CH2CO + H -> CH3 + CO { a = 1.500E+09 n = 1.430 E = 11.250 } #Ref: Lindstedt et al., 1997; Waly and Williams, 2001 110f: CH2CO + O -> T-CH2 + CO2 { a = 2.000E+13 n = 0.000 E = 9.600 } 111f: CH2CO + O -> HCCO + OH { a = 1.000E+13 n = 0.000 E = 8.370 } 112f: CH2CO + CH3 -> C2H5 + CO { a = 9.000E+10 n = 0.000 E = 0.000 } # HCCO REACTIONS #Ref: Frank et al., 1986 113f: HCCO + H -> S-CH2 + CO { a = 1.500E+14 n = 0.000 E = 0.000 } #Ref: Westbrook, 1984 114f: HCCO + OH -> HCO + CO + H { a = 2.000E+12 n = 0.000 E = 0.000 } #Ref: Frank et al., 1986 115f: HCCO + O -> 2CO + H { a = 9.640E+13 n = 0.000 E = 0.000 } #Ref: Varatharajan and Williams, 2001 116f: HCCO + O2 -> 2CO + OH { a = 2.880E+07 n = 1.700 E = 4.190 } 117f: HCCO + O2 -> CO2 + CO + H { a = 1.400E+07 n = 1.700 E = 4.190 } # C2H FORMATION AND CONSUMPTION #Ref: Frenklach et al., 1992; Waly and Williams, 2001 118f: C2H + OH -> HCCO + H { a = 2.000E+13 n = 0.000 E = 0.000 } 119f: C2H + O -> CO + CH { a = 1.020E+13 n = 0.000 E = 0.000 } 120f: C2H + O2 -> HCCO + O { a = 6.020E+11 n = 0.000 E = 0.000 } 121f: C2H + O2 -> CH + CO2 { a = 4.500E+15 n = 0.000 E = 105.000 } 122f: C2H + O2 -> HCO + CO { a = 2.410E+12 n = 0.000 E = 0.000 } # HYDROXYMETHYL (CH2OH) REACTIONS #Ref: Li and Williams, 1998 123f: CH2OH + H -> CH2O + H2 { a = 3.000E+13 n = 0.000 E = 0.000 } #Ref: Saxena and Williams, work in progress 124f: CH2OH + H -> CH3 + OH { a = 2.500E+17 n = -0.930 E = 21.451 } #Ref: Li and Williams, 1998 125f: CH2OH + OH -> CH2O + H2O { a = 2.400E+13 n = 0.000 E = 0.000 } 126f: CH2OH + O2 -> CH2O + HO2 { a = 5.000E+12 n = 0.000 E = 0.000 } 127f: CH2OH + M9 -> CH2O + H + M9 { a = 5.000E+13 n = 0.000 E = 105.100 } 128f: CH3O + M9 -> CH2OH + M9 { a = 1.000E+14 n = 0.000 E = 80.000 } 129f: CH2CO + OH -> CH2OH + CO { a = 1.020E+13 n = 0.000 E = 0.000 } # METHANOL (CH3OH) REACTIONS #Ref: Li and Williams, 1998 130f: CH3OH + OH -> CH2OH + H2O { a = 1.440E+06 n = 2.000 E = -3.510 } #Ref: Saxena and Williams, work in progress 131f: CH3OH + OH -> CH3O + H2O { a = 4.400E+06 n = 2.000 E = 6.300 } #Ref: Jodkowski et al., 1999: RRKM 132f: CH3OH + H -> CH2OH + H2 { a = 1.354E+03 n = 3.200 E = 14.605 } 133f: CH3OH + H -> CH3O + H2 { a = 6.830E+01 n = 3.400 E = 30.292 } #Ref: Li and Williams, 1998 134f: CH3OH + O -> CH2OH + OH { a = 1.000E+13 n = 0.000 E = 19.600 } 135f: CH3OH + HO2 -> CH2OH + H2O2 { a = 6.200E+12 n = 0.000 E = 81.100 } 136f: CH3OH + O2 -> CH2OH + HO2 { a = 2.000E+13 n = 0.000 E = 188.000 } #Ref: Held et al., 1999; Saxena and Williams,work in progress 137f: CH3OH + M9 -> CH3 + OH + M9 { ai = 1.900E+16 ni = 0.000 Ei = 383.798 a = 2.950E+44 n = -7.350 E = 399.405 fca = 5.860E-01 fcta = 2.790E+02 fcb = 4.140E-01 fctb = 5.459E+03 } # C3 REACTIONS #Ref: Davis et al., 1999 138f: C3H4 + O -> C2H4 + CO { a = 2.000E+07 n = 1.800 E = 4.184 } #Davis et al. 1 atm propyne reactions 139f: CH3 + C2H2 -> C3H4 + H { a = 2.560E+09 n = 1.100 E = 57.086 } 140f: C3H4 + O -> HCCO + CH3 { a = 7.300E+12 n = 0.000 E = 9.414 } # C3H3 rxns added to improve allyl ignition # San Diego fit of Troe falloff for several values of pressure #Ref: Petrova and Williams, 2005 141f: C3H3 + H + M -> C3H4 + M { ai = 3.000E+13 ni = 0.000 Ei = 0.000 a = 9.000E+15 n = 1.000 E = 0.000 fca = 5.000E-01 fcta = 1.000E+30 fcb = 5.000E-01 fctb = 0.000E+00 } 142f: C3H3 + HO2 -> C3H4 + O2 { a = 2.500E+12 n = 0.000 E = 0.000 } # ALLYL REACTIONS #Ref: Wang, 1997 143f: C3H4 + OH -> C3H3 + H2O { a = 5.300E+06 n = 2.000 E = 8.368 } #Ref: Slagle, 1986 144f: C3H3 + O2 -> CH2CO + HCO { a = 3.000E+10 n = 0.000 E = 12.000 } # C3H5 REACTIONS # San Diego fit of Troe falloff for several values of pressure #Ref: Petrova and Williams, 2005 145f: C3H4 + H + M -> C3H5 + M { ai = 4.000E+13 ni = 0.000 Ei = 0.000 a = 3.000E+24 n = -2.000 E = 0.000 fca = 2.000E-01 fcta = 1.000E+30 fcb = 8.000E-01 fctb = 0.000E+00 } #Ref: Tsang, 1991 146f: C3H5 + H -> C3H4 + H2 { a = 1.800E+13 n = 0.000 E = 0.000 } #Ref: Bozelli and Dean, 1993 147f: C3H5 + O2 -> C3H4 + HO2 { a = 4.990E+15 n = -1.400 E = 93.839 } #Ref: Petrova and Williams, 2005 148f: C3H5 + CH3 -> C3H4 + CH4 { a = 3.000E+12 n = -0.320 E = -0.548 } # San Diego fit of Troe falloff for several values of pressure 149f: C2H2 + CH3 + M -> C3H5 + M { ai = 6.000E+08 ni = 0.000 Ei = 0.000 a = 2.000E+09 n = 1.000 E = 0.000 fca = 5.000E-01 fcta = 1.000E+30 fcb = 5.000E-01 fctb = 0.000E+00 } 150f: C3H5 + OH -> C3H4 + H2O { a = 6.000E+12 n = 0.000 E = 0.000 } #Reactions added in DE, after C3H4 thermodata was changed to davis's aC3H4 #Ref: Wang, 1997 151f: C3H3 + HCO -> C3H4 + CO { a = 2.500E+13 n = 0.000 E = 0.000 } #Ref: Davis et al., 1999 152f: C3H3 + HO2 -> OH + CO + C2H3 { a = 8.000E+11 n = 0.000 E = 0.000 } #Ref: Wang, 2001 153f: C3H4 + O2 -> CH3 + HCO + CO { a = 4.000E+14 n = 0.000 E = 175.000 } # PROPENE (C3H6) REACTIONS #Ref: Tsang, 1991 154f: C3H6 + O -> C2H5 + HCO { a = 3.500E+07 n = 1.650 E = -4.070 } 155f: C3H6 + OH -> C3H5 + H2O { a = 3.100E+06 n = 2.000 E = -1.248 } 156f: C3H6 + O -> CH2CO + CH3 + H { a = 1.200E+08 n = 1.650 E = 1.370 } 157f: C3H6 + H -> C3H5 + H2 { a = 1.700E+05 n = 2.500 E = 10.430 } #Ref: Davis et al., 1999 158f: C3H5 + H + M8 -> C3H6 + M8 { ai = 2.000E+14 ni = 0.000 Ei = 0.000 a = 1.330E+60 n = -12.000 E = 24.970 fca = 9.800E-01 fcta = 1.097E+03 fcb = 2.000E-02 fctb = 1.097E+03 fcc = 1 fctc = 6.860E+03 } #Ref: Baulch et al., 1992 159f: C3H5 + HO2 -> C3H6 + O2 { a = 2.660E+12 n = 0.000 E = 0.000 } # the rate from Baulch has been modified in San Diego Mechanism 160f: C3H5 + HO2 -> OH + C2H3 + CH2O { a = 3.000E+12 n = 0.000 E = 0.000 } #Ref: Davis et al., 1999 161f: C2H3 + CH3 + M8 -> C3H6 + M8 { ai = 2.500E+13 ni = 0.000 Ei = 0.000 a = 4.270E+58 n = -11.940 E = 40.880 fca = 8.250E-01 fcta = 1.341E+03 fcb = 1.750E-01 fctb = 6.000E+04 fcc = 1 fctc = 1.014E+04 } 162f: C3H6 + H -> C2H4 + CH3 { a = 1.600E+22 n = -2.390 E = 46.800 } 163f: CH3 + C2H3 -> C3H5 + H { a = 1.500E+24 n = -2.830 E = 77.900 } #PROPANE (C3H8) REACTIONS #Ref: Baulch et al., 1994 164f: C3H8 + M -> CH3 + C2H5 + M { ai = 1.100E+17 ni = 0.000 Ei = 353.100 a = 7.830E+18 n = 0.000 E = 271.868 fca = 2.400E-01 fcta = 1.946E+03 fcb = 7.600E-01 fctb = 3.800E+01 } #Ref: Varatharajan and Williams, 2000; Davis et al., 1999; Tsang, 1988 165f: C3H8 + O2 -> I-C3H7 + HO2 { a = 4.000E+13 n = 0.000 E = 198.740 } 166f: C3H8 + O2 -> N-C3H7 + HO2 { a = 4.000E+13 n = 0.000 E = 213.100 } 167f: C3H8 + H -> I-C3H7 + H2 { a = 1.300E+06 n = 2.400 E = 18.707 } #Ref: Tsang, 1988; Marinov, 1996 168f: C3H8 + H -> N-C3H7 + H2 { a = 1.330E+06 n = 2.540 E = 28.290 } #Ref: Tsang, 1988; Davis et al., 1999 169f: C3H8 + O -> I-C3H7 + OH { a = 4.760E+04 n = 2.710 E = 8.817 } 170f: C3H8 + O -> N-C3H7 + OH { a = 1.900E+05 n = 2.680 E = 15.558 } #Ref: Davis et al., 1999 171f: C3H8 + OH -> N-C3H7 + H2O { a = 1.400E+03 n = 2.660 E = 2.206 } 172f: C3H8 + OH -> I-C3H7 + H2O { a = 2.700E+04 n = 2.390 E = 1.645 } #Ref: Tsang, 1988; Marinov, 1996; Davis et al., 1999 173f: C3H8 + HO2 -> I-C3H7 + H2O2 { a = 9.640E+03 n = 2.600 E = 58.230 } 174f: C3H8 + HO2 -> N-C3H7 + H2O2 { a = 4.760E+04 n = 2.550 E = 69.000 } # I-C3H7 REACTIONS #Ref: Tsang, 1988; Qin, 2000:thesis 175f: I-C3H7 + C3H8 -> N-C3H7 + C3H8 { a = 8.400E-03 n = 4.200 E = 36.300 } #Ref: Davis et al., 1999 176f: C3H6 + H + M8 -> I-C3H7 + M8 { ai = 1.330E+13 ni = 0.000 Ei = 6.530 a = 8.700E+42 n = -7.500 E = 19.800 fca = 0.000E+00 fcta = 1.000E+03 fcb = 1.000E+00 fctb = 6.454E+02 fcc = 1 fctc = 6.844E+03 } #Ref: Tsang, 1988; Davis et al., 1999 177f: I-C3H7 + O2 -> C3H6 + HO2 { a = 1.300E+11 n = 0.000 E = 0.000 } 178f: N-C3H7 + M -> CH3 + C2H4 + M { ai = 1.230E+13 ni = -0.100 Ei = 126.400 a = 5.490E+49 n = -10.000 E = 149.699 fca = 2.170E+00 fcta = 2.510E+02 fcb = -1.170E+00 fctb = 1.000E-15 fcc = 1 fctc = 1.185E+03 } #Ref: Davis et al., 1999 # REVERSE 179f: H + C3H6 + M8 -> N-C3H7 + M8 { ai = 1.330E+13 ni = 0.000 Ei = 13.640 a = 6.260E+38 n = -6.660 E = 29.290 fca = 0.000E+00 fcta = 1.000E+03 fcb = 1.000E+00 fctb = 1.310E+03 fcc = 1 fctc = 4.810E+04 } #Ref: Tsang, 1988; Davis et al., 1999 180f: N-C3H7 + O2 -> C3H6 + HO2 { a = 9.000E+10 n = 0.000 E = 0.000 } let M = 1.0[OTHER]. let M1 = 2.50 [H2] + 12.00 [H2O] + 1.90 [CO] + 3.80 [CO2] + 0.50 [AR] + 0.50 [HE] + 1.0 [OTHER]. let M2 = 2.50 [H2] + 12.00 [H2O] + 1.90 [CO] + 3.80 [CO2] + 0.38 [AR] + 0.38 [HE] + 1.0 [OTHER]. let M3 = 2.50 [H2] + 12.00 [H2O] + 1.90 [CO] + 3.80 [CO2] + 0.20 [AR] + 0.20 [HE] + 1.0 [OTHER]. let M4 = 2.50 [H2] + 12.00 [H2O] + 0.75 [AR] + 0.75 [HE] + 1.90 [CO] + 3.80 [CO2] + 1.0 [OTHER]. let M5 = 0.70 [AR] + 0.70 [HE] + 1.00 [O2] + 16.00 [H2O] + 2.50 [H2] + 1.20 [CO] + 2.40 [CO2] + 1.50 [C2H6] + 1.0 [OTHER]. let M6 = 0.40 [AR] + 0.40 [HE] + 2.00 [H2] + 6.00 [H2O] + 1.50 [CO] + 2.00 [CO2] + 2.00 [CH4] + 3.00 [C2H6] + 1.0 [OTHER]. let M7 = 1.90 [H2] + 12.00 [H2O] + 2.50 [CO] + 2.50 [CO2] + 1.0 [OTHER]. let M8 = 2.00 [H2] + 6.00 [H2O] + 2.00 [CH4] + 1.50 [CO] + 2.00 [CO2] + 3.00 [C2H6] + 0.70 [AR] + 1.0 [OTHER]. let M9 = 2.00 [H2] + 6.00 [H2O] + 2.00 [CH4] + 1.50 [CO] + 2.00 [CO2] + 0.70 [AR] + 1.0 [OTHER]. let M10 = 2.40 [H2] + 15.40 [H2O] + 1.80 [CO] + 3.60 [CO2] + 1.0 [OTHER].